IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India.
Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
PLoS Genet. 2020 Nov 5;16(11):e1009071. doi: 10.1371/journal.pgen.1009071. eCollection 2020 Nov.
Regulation of gene expression programs is crucial for the survival of microbial pathogens in host environments and for their ability to cause disease. Here we investigated the epigenetic regulator RSC (Remodels the Structure of Chromatin) in the most prevalent human fungal pathogen Candida albicans. Biochemical analysis showed that CaRSC comprises 13 subunits and contains two novel non-essential members, which we named Nri1 and Nri2 (Novel RSC Interactors) that are exclusive to the CTG clade of Saccharomycotina. Genetic analysis showed distinct essentiality of C. albicans RSC subunits compared to model fungal species suggesting functional and structural divergence of RSC functions in this fungal pathogen. Transcriptomic and proteomic profiling of a conditional mutant of the essential catalytic subunit gene STH1 demonstrated global roles of RSC in C. albicans biology, with the majority of growth-related processes affected, as well as mis-regulation of genes involved in morphotype switching, host-pathogen interaction and adaptive fitness. We further assessed the functions of non-essential CaRSC subunits, showing that the novel subunit Nri1 and the bromodomain subunit Rsc4 play roles in filamentation and stress responses; and also interacted at the genetic level to regulate cell viability. Consistent with these roles, Rsc4 is required for full virulence of C. albicans in the murine model of systemic infection. Taken together, our data builds the first comprehensive study of the composition and roles of RSC in C. albicans, showing both conserved and distinct features compared to model fungal systems. The study illuminates how C. albicans uses RSC-dependent transcriptional regulation to respond to environmental signals and drive survival fitness and virulence in mammals.
基因表达程序的调控对于微生物病原体在宿主环境中的生存以及它们引起疾病的能力至关重要。在这里,我们研究了最常见的人类真菌病原体白色念珠菌中的表观遗传调节剂 RSC(重塑染色质结构)。生化分析表明,CaRSC 由 13 个亚基组成,包含两个新的非必需成员,我们将其命名为 Nri1 和 Nri2(新型 RSC 相互作用物),它们仅存在于 Saccharomycotina 的 CTG 分支中。遗传分析表明,与模型真菌物种相比,白色念珠菌 RSC 亚基的独特必需性表明 RSC 功能在该真菌病原体中具有功能和结构上的差异。必需的催化亚基基因 STH1 的条件突变体的转录组和蛋白质组谱分析表明,RSC 在白色念珠菌生物学中具有全局作用,大多数与生长相关的过程受到影响,以及涉及形态转换、宿主-病原体相互作用和适应性的基因的失调。我们进一步评估了非必需的 CaRSC 亚基的功能,表明新型亚基 Nri1 和溴结构域亚基 Rsc4 在菌丝形成和应激反应中发挥作用;并且还在遗传水平上相互作用以调节细胞活力。与这些作用一致,Rsc4 是白色念珠菌在系统性感染的小鼠模型中完全毒力所必需的。总之,我们的数据构建了 RSC 在白色念珠菌中的组成和作用的首个综合研究,与模型真菌系统相比,显示出保守和独特的特征。该研究阐明了白色念珠菌如何利用 RSC 依赖性转录调控来响应环境信号并在哺乳动物中驱动生存适应性和毒力。