Gu Nina X, Oyala Paul H, Peters Jonas C
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
Angew Chem Int Ed Engl. 2021 Feb 19;60(8):4009-4013. doi: 10.1002/anie.202013119. Epub 2020 Dec 23.
M(NH ) intermediates involved in N-N bond formation are central to ammonia oxidation (AO) catalysis, an enabling technology to ultimately exploit ammonia (NH ) as an alternative fuel source. While homocoupling of a terminal amide species (M-NH ) to form hydrazine (N H ) has been proposed, well-defined examples are without precedent. Herein, we discuss the generation and electronic structure of a Ni -NH species that undergoes bimolecular coupling to generate a Ni (N H ) complex. This hydrazine adduct can be further oxidized to a structurally unusual Ni (N H ) species; this releases N in the presence of NH , thus establishing a synthetic cycle for Ni-mediated AO. Distribution of the redox load for H N-NH formation via NH coupling between two metal centers presents an attractive strategy for AO catalysis using Earth-abundant, late first-row metals.
参与氮-氮键形成的M(NH )中间体是氨氧化(AO)催化的核心,氨氧化催化是一项最终能够将氨(NH )用作替代燃料来源的使能技术。虽然有人提出末端酰胺物种(M-NH )发生均偶联以形成肼(N H ),但明确的实例尚无先例。在此,我们讨论了一种Ni -NH物种的生成及其电子结构,该物种会发生双分子偶联以生成Ni (N H )配合物。这种肼加合物可进一步氧化为结构异常的Ni (N H )物种;在NH 存在的情况下,该物种会释放出N ,从而建立了一个Ni介导的AO合成循环。通过两个金属中心之间的NH 偶联形成H N-NH 的氧化还原负载分布,为使用地球上储量丰富的第一排晚期金属进行AO催化提供了一种有吸引力的策略。