Nurdin Lucie, Yang Yan, Neate Peter G N, Piers Warren E, Maron Laurent, Neidig Michael L, Lin Jian-Bin, Gelfand Benjamin S
Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
LPCNO, Université de Toulouse, INSA, UPS Toulouse France.
Chem Sci. 2020 Dec 22;12(6):2231-2241. doi: 10.1039/d0sc06466a.
We report the use of electron rich iron complexes supported by a dianionic diborate pentadentate ligand system, , for the coordination and activation of ammonia (NH) and hydrazine (NHNH). For ammonia, coordination to neutral (BPzPy)Fe(ii) or cationic [(BPzPy)Fe(iii)] platforms leads to well characterized ammine complexes from which hydrogen atoms or protons can be removed to generate, fleetingly, a proposed (BPzPy)Fe(iii)-NH complex (). DFT computations suggest a high degree of spin density on the amido ligand, giving it significant aminyl radical character. It rapidly traps the H atom abstracting agent 2,4,6-tri--butylphenoxy radical (ArO˙) to form a C-N bond in a fully characterized product (), or scavenges hydrogen atoms to return to the ammonia complex (BPzPy)Fe(ii)-NH (). Interestingly, when (BPzPy)Fe(ii) is reacted with NHNH, a hydrazine bridged dimer, (BPzPy)Fe(ii)-NHNH-Fe(ii)(BPzPy) (), is observed at -78 °C and converts to a fully characterized bridging diazene complex, , along with ammonia adduct as it is allowed to warm to room temperature. Experimental and computational evidence is presented to suggest that (BPzPy)Fe(ii) induces reductive cleavage of the N-N bond in hydrazine to produce the Fe(iii)-NH complex , which abstracts H˙ atoms from to generate the observed products. All of these transformations are relevant to proposed steps in the ammonia oxidation reaction, an important process for the use of nitrogen-based fuels enabled by abundant first row transition metals.
我们报道了使用由双阴离子二硼酸五齿配体体系支撑的富电子铁配合物,用于氨(NH₃)和肼(NH₂NH₂)的配位和活化。对于氨,与中性(BPzPy)Fe(II)或阳离子[(BPzPy)Fe(III)]平台配位会生成特征明确的氨配合物,从中可以去除氢原子或质子,短暂生成一种推测的(BPzPy)Fe(III)-NH₂配合物( )。密度泛函理论计算表明酰胺配体上有高度的自旋密度,赋予其显著的氨基自由基特征。它能迅速捕获氢原子夺取剂2,4,6-三叔丁基苯氧基自由基(ArO˙),在一个特征明确的产物中形成C-N键( ),或者清除氢原子回到氨配合物(BPzPy)Fe(II)-NH₃( )。有趣的是,当(BPzPy)Fe(II)与NH₂NH₂反应时,在-78°C下观察到一种肼桥联二聚体(BPzPy)Fe(II)-NH₂NH₂-Fe(II)(BPzPy)( ),当升温至室温时,它会转化为一种特征明确的桥联二氮烯配合物( )以及氨加合物 。实验和计算证据表明,(BPzPy)Fe(II)诱导肼中N-N键的还原裂解生成Fe(III)-NH₂配合物( ),该配合物从 中夺取H˙原子生成观察到的产物。所有这些转化都与氨氧化反应中提出的步骤相关,氨氧化反应是利用丰富的第一排过渡金属实现氮基燃料使用的重要过程。