Gack Nicolas, Iankevich Gleb, Benel Cahit, Kruk Robert, Wang Di, Hahn Horst, Reisinger Thomas
Karlsruhe Institute of Technology, Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Karlsruhe Institute of Technology, Karlsruhe Nano Micro Facility, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Nanomaterials (Basel). 2020 Nov 3;10(11):2192. doi: 10.3390/nano10112192.
The combination of magnetic and semiconducting properties in one material system has great potential for integration of emerging spintronics with conventional semiconductor technology. One standard route for the synthesis of magnetic semiconductors is doping of semiconductors with magnetic atoms. In many semiconductor-magnetic-dopant systems, the magnetic atoms form precipitates within the semiconducting matrix. An alternative and controlled way to realize such nanocomposite materials is the assembly by co-deposition of size-selected cluster ions and a semiconductor. Here we follow the latter approach to demonstrate that this fabrication route can be used to independently study the influence of cluster concentration and cluster size on magneto-transport properties. In this case we study Fe clusters composed of approximately 500 or 1000 atoms soft-landed into a thermally evaporated amorphous Ge matrix. The analysis of field and temperature dependent transport shows that tunneling processes affected by Coulomb blockade dominate at low temperatures. The nanocomposites show saturating tunneling magnetoresistance, additionally superimposed by at least one other effect not saturating upon the maximum applied field of 6 T. The nanocomposites' resistivity and the observed tunneling magnetoresistance depend exponentially on the average distance between cluster surfaces. On the contrary, there is no notable influence of the cluster size on the tunneling magnetoresistance.
在一个材料体系中兼具磁性和半导体特性,对于新兴的自旋电子学与传统半导体技术的集成具有巨大潜力。合成磁性半导体的一种标准方法是用磁性原子对半导体进行掺杂。在许多半导体 - 磁性掺杂体系中,磁性原子会在半导体基质中形成沉淀物。实现这种纳米复合材料的另一种可控方法是通过共沉积尺寸选择的团簇离子和半导体来进行组装。在此,我们采用后一种方法来证明这种制造途径可用于独立研究团簇浓度和团簇尺寸对磁输运性质的影响。在这种情况下,我们研究由大约500个或1000个原子组成的铁团簇,这些团簇软着陆到热蒸发的非晶锗基质中。对磁场和温度依赖输运的分析表明,在低温下受库仑阻塞影响的隧穿过程占主导。这些纳米复合材料显示出饱和的隧穿磁电阻,此外还叠加有至少一种在6 T的最大外加磁场下不饱和的其他效应。纳米复合材料的电阻率和观察到的隧穿磁电阻指数地依赖于团簇表面之间的平均距离。相反,团簇尺寸对隧穿磁电阻没有显著影响。