Suppr超能文献

基于图搜索的移动机器人前沿图结构探索方法。

Graph Search-Based Exploration Method Using a Frontier-Graph Structure for Mobile Robots.

作者信息

Ryu Hyejeong

机构信息

Department of Mechatronics Engineering, Kangwon National University, Chuncheon KR24341, Korea.

出版信息

Sensors (Basel). 2020 Nov 3;20(21):6270. doi: 10.3390/s20216270.

Abstract

This paper describes a graph search-based exploration method. Segmented frontier nodes and their relative transformations constitute a frontier-graph structure. Frontier detection and segmentation are performed using local grid maps of adjacent nodes. The proposed frontier-graph structure can systematically manage local information according to the exploration state and overcome the problem caused by updating a single global grid map. The robot selects the next target using breadth-first search (BFS) exploration of the frontier-graph. The BFS exploration is improved to generate an efficient loop-closing sequence between adjacent nodes. We verify that our BFS-based exploration method can gradually extend the frontier-graph structure and efficiently map the entire environment, regardless of the starting position.

摘要

本文描述了一种基于图搜索的探索方法。分段前沿节点及其相对变换构成了前沿图结构。使用相邻节点的局部网格地图进行前沿检测和分割。所提出的前沿图结构可以根据探索状态系统地管理局部信息,并克服更新单个全局网格地图所带来的问题。机器人使用前沿图的广度优先搜索(BFS)探索来选择下一个目标。对BFS探索进行了改进,以在相邻节点之间生成高效的闭环序列。我们验证了基于BFS的探索方法可以逐渐扩展前沿图结构,并有效地绘制整个环境,而不管起始位置如何。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1d6/7662437/364c1a217120/sensors-20-06270-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验