ISAE-SUPAERO, Université de Toulouse, 10 avenue Edouard Belin-BP 54032, 31055 Toulouse, CEDEX 4, France.
Sensors (Basel). 2020 Apr 7;20(7):2068. doi: 10.3390/s20072068.
Autonomous navigation requires both a precise and robust mapping and localization solution. In this context, Simultaneous Localization and Mapping (SLAM) is a very well-suited solution. SLAM is used for many applications including mobile robotics, self-driving cars, unmanned aerial vehicles, or autonomous underwater vehicles. In these domains, both visual and visual-IMU SLAM are well studied, and improvements are regularly proposed in the literature. However, LiDAR-SLAM techniques seem to be relatively the same as ten or twenty years ago. Moreover, few research works focus on vision-LiDAR approaches, whereas such a fusion would have many advantages. Indeed, hybridized solutions offer improvements in the performance of SLAM, especially with respect to aggressive motion, lack of light, or lack of visual features. This study provides a comprehensive survey on visual-LiDAR SLAM. After a summary of the basic idea of SLAM and its implementation, we give a complete review of the state-of-the-art of SLAM research, focusing on solutions using vision, LiDAR, and a sensor fusion of both modalities.
自主导航需要精确和鲁棒的映射和定位解决方案。在这种情况下,同步定位与建图(SLAM)是一个非常合适的解决方案。SLAM 被广泛应用于移动机器人、自动驾驶汽车、无人机或自主水下交通工具等领域。在这些领域,视觉和视觉-IMU SLAM 都得到了很好的研究,文献中也经常提出改进方法。然而,激光雷达-SLAM 技术似乎与十年或二十年前相比并没有太大的变化。此外,很少有研究工作关注视觉-激光雷达方法,而这种融合将有许多优势。事实上,混合解决方案提高了 SLAM 的性能,特别是在激烈运动、光线不足或缺乏视觉特征的情况下。本研究对视觉-激光雷达 SLAM 进行了全面调查。在总结了 SLAM 的基本思想及其实现方法之后,我们全面回顾了 SLAM 研究的最新进展,重点介绍了使用视觉、激光雷达以及两种模式的传感器融合的解决方案。