Suppr超能文献

SURF:利用GPU上的工作负载状态进行方向优化的广度优先搜索。

SURF: Direction-Optimizing Breadth-First Search Using Workload State on GPUs.

作者信息

Yoon Daegun, Oh Sangyoon

机构信息

Department of Artificial Intelligence, Ajou University, Suwon 16499, Korea.

出版信息

Sensors (Basel). 2022 Jun 29;22(13):4899. doi: 10.3390/s22134899.

Abstract

Graph data structures have been used in a wide range of applications including scientific and social network applications. Engineers and scientists analyze graph data to discover knowledge and insights by using various graph algorithms. A breadth-first search (BFS) is one of the fundamental building blocks of complex graph algorithms and its implementation is included in graph libraries for large-scale graph processing. In this paper, we propose a novel direction selection method, SURF (Selecting directions Upon Recent workload of Frontiers) to enhance the performance of BFS on GPU. A direction optimization that selects the proper traversal direction of a BFS execution between the push and pull phases is crucial to the performance as well as for efficient handling of the varying workloads of the frontiers. However, existing works select the direction using condition statements based on predefined thresholds without considering the changing workload state. To solve this drawback, we define several metrics that describe the state of the workload and analyze their impact on the BFS performance. To show that SURF selects the appropriate direction, we implement the direction selection method with a deep neural network model that adopts those metrics as the input features. Experimental results indicate that SURF achieves a higher direction prediction accuracy and reduced execution time in comparison with existing state-of-the-art methods that support a direction-optimizing BFS. SURF yields up to a 5.62× and 3.15× speedup over the state-of-the-art graph processing frameworks Gunrock and Enterprise, respectively.

摘要

图数据结构已被广泛应用于包括科学和社交网络应用在内的众多领域。工程师和科学家通过使用各种图算法来分析图数据,以发现知识和见解。广度优先搜索(BFS)是复杂图算法的基本构建块之一,其实现包含在用于大规模图处理的图库中。在本文中,我们提出了一种新颖的方向选择方法,即SURF(基于前沿最近工作量选择方向),以提高BFS在GPU上的性能。在BFS执行的推送和拉取阶段之间选择合适的遍历方向的方向优化对于性能以及有效处理前沿的变化工作量至关重要。然而,现有工作基于预定义阈值使用条件语句来选择方向,而没有考虑工作量状态的变化。为了解决这一缺点,我们定义了几个描述工作量状态的指标,并分析了它们对BFS性能的影响。为了表明SURF选择了合适的方向,我们使用一个深度神经网络模型实现了方向选择方法,该模型采用这些指标作为输入特征。实验结果表明,与支持方向优化BFS的现有最先进方法相比,SURF实现了更高的方向预测准确率并减少了执行时间。SURF分别比最先进的图处理框架Gunrock和Enterprise加速了5.62倍和3.15倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dce/9269471/0e0421f5f8f3/sensors-22-04899-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验