Szirmai Péter, Mézière Cécile, Bastien Guillaume, Wzietek Pawel, Batail Patrick, Martino Edoardo, Mantulnikovs Konstantins, Pisoni Andrea, Riedl Kira, Cottrell Stephen, Baines Christopher, Forró László, Náfrádi Bálint
Laboratory of Physics of Complex Matter, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, 1015.
Laboratoire MOLTECH-Anjou, CNRS and Université d'Angers, 49045 Angers, France, 49045 Angers.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29555-29560. doi: 10.1073/pnas.2000188117. Epub 2020 Nov 5.
The exotic properties of quantum spin liquids (QSLs) have continually been of interest since Anderson's 1973 ground-breaking idea. Geometrical frustration, quantum fluctuations, and low dimensionality are the most often evoked material's characteristics that favor the long-range fluctuating spin state without freezing into an ordered magnet or a spin glass at low temperatures. Among the few known QSL candidates, organic crystals have the advantage of having rich chemistry capable of finely tuning their microscopic parameters. Here, we demonstrate the emergence of a QSL state in [EDT-TTF-CONH] [[Formula: see text]] (EDT-BCO), where the EDT molecules with spin-1/2 on a triangular lattice form layers which are separated by a sublattice of BCO molecular rotors. By several magnetic measurements, we show that the subtle random potential of frozen BCO Brownian rotors suppresses magnetic order down to the lowest temperatures. Our study identifies the relevance of disorder in the stabilization of QSLs.
自1973年安德森提出开创性想法以来,量子自旋液体(QSLs)的奇异特性一直备受关注。几何阻挫、量子涨落和低维性是最常被提及的有利于长程波动自旋态的材料特性,即在低温下不会冻结成有序磁体或自旋玻璃。在少数已知的QSL候选材料中,有机晶体具有化学性质丰富的优势,能够精细调节其微观参数。在此,我们展示了在[EDT-TTF-CONH][[化学式:见原文]](EDT-BCO)中出现了QSL态,其中具有自旋1/2的EDT分子在三角形晶格上形成层,这些层由BCO分子转子的子晶格隔开。通过多次磁性测量,我们表明冻结的BCO布朗转子的微妙随机势将磁有序抑制到了最低温度。我们的研究确定了无序在稳定QSLs中的相关性。