Azpeitia J, Palacio I, Martínez J I, Muñoz-Ochando I, Lauwaet K, Mompean F J, Ellis G J, García-Hernández M, Martín-Gago J A, Munuera C, López M F
Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco ES-28049, Madrid, Spain.
Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, ES-28006 Madrid, Spain.
Appl Surf Sci. 2020 Jul 11;529:147100. doi: 10.1016/j.apsusc.2020.147100. eCollection 2020 Nov 1.
We investigate the intercalation process of oxygen in-between a PVD-grown graphene layer and different copper substrates as a methodology for reducing the substrate-layer interaction. This growth method leads to an extended defect-free graphene layer that strongly couples with the substrate. We have found, by means of X-ray photoelectron spectroscopy, that after oxygen exposure at different temperatures, ranging from 280 °C to 550 °C, oxygen intercalates at the interface of graphene grown on Cu foil at an optimal temperature of 500 °C. The low energy electron diffraction technique confirms the adsorption of an atomic oxygen adlayer on top of the Cu surface and below graphene after oxygen exposure at elevated temperature, but no oxidation of the substrate is induced. The emergence of the 2D Raman peak, quenched by the large interaction with the substrate, reveals that the intercalation process induces a structural undoing. As suggested by atomic force microscopy, the oxygen intercalation does not change significantly the surface morphology. Moreover, theoretical simulations provide further insights into the electronic and structural undoing process. This protocol opens the door to an efficient methodology to weaken the graphene-substrate interaction for a more efficient transfer to arbitrary surfaces.
我们研究了在物理气相沉积(PVD)生长的石墨烯层与不同铜衬底之间的氧嵌入过程,以此作为减少衬底 - 层间相互作用的一种方法。这种生长方法会形成与衬底强烈耦合的大面积无缺陷石墨烯层。我们通过X射线光电子能谱发现,在280℃至550℃的不同温度下进行氧气暴露后,在500℃的最佳温度下,氧气会嵌入在铜箔上生长的石墨烯界面处。低能电子衍射技术证实,在高温下进行氧气暴露后,在铜表面顶部和石墨烯下方吸附了一层原子氧,但未诱导衬底发生氧化。因与衬底的强相互作用而淬灭的二维拉曼峰的出现表明,嵌入过程引发了结构松解。如原子力显微镜所示,氧嵌入并未显著改变表面形态。此外,理论模拟为电子和结构松解过程提供了进一步的见解。该方案为一种有效的方法打开了大门,可削弱石墨烯与衬底之间的相互作用,以便更有效地转移到任意表面。