Isaure Marie-Pierre, Albertelli Marine, Kieffer Isabelle, Tucoulou Rémi, Petrel Melina, Gontier Etienne, Tessier Emmanuel, Monperrus Mathilde, Goñi-Urriza Marisol
Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, MIRA, IPREM, Pau, France.
FAME-UHD, BM16 Beamline, European Synchrotron Radiation Facility (ESRF), BP220, Grenoble, France.
Front Microbiol. 2020 Oct 14;11:584715. doi: 10.3389/fmicb.2020.584715. eCollection 2020.
Microorganisms are key players in the transformation of mercury into neurotoxic methylmercury (MeHg). Nevertheless, this mechanism and the opposite MeHg demethylation remain poorly understood. Here, we explored the impact of inorganic mercury (IHg) and MeHg concentrations from 0.05 to 50 μM on the production and degradation of MeHg in two sulfate-reducing bacteria, BerOc1 able to methylate and demethylate mercury and G200 only able to demethylate MeHg. MeHg produced by BerOc1 increased with increasing IHg concentration with a maximum attained for 5 μM, and suggested a saturation of the process. MeHg was mainly found in the supernatant suggesting its export from the cell. Hg L-edge High- Energy-Resolution-Fluorescence-Detected-X-ray-Absorption-Near-Edge-Structure spectroscopy (HERFD-XANES) identified MeHg produced by BerOc1 as MeHg-cysteine form. A dominant tetracoordinated βHgS form was detected for BerOc1 exposed to the lowest IHg concentrations where methylation was detected. In contrast, at the highest exposure (50 μM) where Hg methylation was abolished, Hg species drastically changed suggesting a role of Hg speciation in the production of MeHg. The tetracoordinated βHgS was likely present as nano-particles as suggested by transmission electron microscopy combined to X-ray energy dispersive spectroscopy (TEM-X-EDS) and nano-X ray fluorescence (nano-XRF). When exposed to MeHg, the production of IHg, on the contrary, increased with the increase of MeHg exposure until 50 μM for both BerOc1 and G200 strains, suggesting that demethylation did not require intact biological activity. The formed IHg species were identified as various tetracoordinated Hg-S forms. These results highlight the important role of thiol ligands and Hg coordination in Hg methylation and demethylation processes.
微生物是汞转化为具有神经毒性的甲基汞(MeHg)的关键因素。然而,这种机制以及相反的MeHg去甲基化过程仍知之甚少。在此,我们探究了0.05至50 μM的无机汞(IHg)和MeHg浓度对两种硫酸盐还原菌中MeHg产生和降解的影响,其中BerOc1能够使汞甲基化和去甲基化,而G200仅能使MeHg去甲基化。BerOc1产生的MeHg随着IHg浓度的增加而增加,在5 μM时达到最大值,这表明该过程存在饱和现象。MeHg主要存在于上清液中,表明其从细胞中输出。汞L边高能分辨荧光检测X射线吸收近边结构光谱(HERFD-XANES)将BerOc1产生的MeHg鉴定为MeHg-半胱氨酸形式。在检测到甲基化的最低IHg浓度下,检测到BerOc1中占主导的四配位βHgS形式。相反,在最高暴露浓度(50 μM)下汞甲基化被消除,汞形态发生了剧烈变化,这表明汞形态在MeHg的产生中起作用。结合透射电子显微镜和X射线能量色散光谱(TEM-X-EDS)以及纳米X射线荧光(nano-XRF)表明,四配位βHgS可能以纳米颗粒的形式存在。相反,当暴露于MeHg时,对于BerOc1和G200菌株,IHg的产生都随着MeHg暴露量的增加而增加,直至50 μM,这表明去甲基化并不需要完整的生物活性。形成的IHg物种被鉴定为各种四配位Hg-S形式。这些结果突出了硫醇配体和汞配位在汞甲基化和去甲基化过程中的重要作用。