Suppr超能文献

半胱氨酸和硫化物在微生物汞(II)摄取和硫代谢相互作用中的作用。

The role of cysteine and sulfide in the interplay between microbial Hg(ii) uptake and sulfur metabolism.

机构信息

Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.

Université Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000 Grenoble, France.

出版信息

Metallomics. 2019 Jul 17;11(7):1219-1229. doi: 10.1039/c9mt00077a.

Abstract

Biogenic thiols, such as cysteine, have been used to control the speciation of Hg(ii) in bacterial exposure experiments. However, the extracellular biodegradation of excess cysteine leads to the formation of Hg(ii)-sulfide species, convoluting the interpretation of Hg(ii) uptake results. Herein, we test the hypothesis that Hg(ii)-sulfide species formation is a critical step during bacterial Hg(ii) uptake in the presence of excess cysteine. An Escherichia coli (E. coli) wild-type and mutant strain lacking the decR gene that regulates cysteine degradation to sulfide were exposed to 50 and 500 nM Hg with 0 to 2 mM cysteine. The decR mutant released ∼4 times less sulfide from cysteine degradation compared to the wild-type for all tested cysteine concentrations during a 3 hour exposure period. We show with thermodynamic calculations that the predicted concentration of Hg(ii)-cysteine species remaining in the exposure medium (as opposed to forming HgS(s)) is a good proxy for the measured concentration of dissolved Hg(ii) (i.e., not cell-bound). Likewise, the measured cell-bound Hg(ii) correlates with thermodynamic calculations for HgS(s) formation in the presence of cysteine. High resolution X-ray absorption near edge structure (HR-XANES) spectra confirm the existence of cell-associated HgS(s) at 500 nM total Hg and suggest the formation of Hg-S clusters at 50 nM total Hg. Our results indicate that a speciation change to Hg(ii)-sulfide controls Hg(ii) cell-association in the presence of excess cysteine.

摘要

生物源硫醇,如半胱氨酸,已被用于控制细菌暴露实验中 Hg(ii) 的形态。然而,过量半胱氨酸的细胞外生物降解会导致 Hg(ii)-硫化物的形成,从而使 Hg(ii)摄取结果的解释变得复杂。在此,我们检验了一个假设,即在过量半胱氨酸存在的情况下,Hg(ii)-硫化物的形成是细菌摄取 Hg(ii)的关键步骤。我们使用缺乏调控半胱氨酸降解为硫化物的 decR 基因的大肠杆菌(E. coli)野生型和突变菌株,在 50 和 500 nM Hg 存在下,用 0 至 2 mM 半胱氨酸进行暴露。在 3 小时暴露期间,与野生型相比,decR 突变体从半胱氨酸降解中释放的硫化物减少了约 4 倍,在所有测试的半胱氨酸浓度下。我们通过热力学计算表明,暴露介质中剩余的 Hg(ii)-半胱氨酸物种的预测浓度(而不是形成 HgS(s))是测量的溶解 Hg(ii)浓度(即,不与细胞结合)的良好替代物。同样,测量的细胞结合 Hg(ii)与存在半胱氨酸时 HgS(s)形成的热力学计算相关。高分辨率 X 射线吸收近边结构(HR-XANES)谱证实了在 500 nM 总 Hg 下存在与细胞相关的 HgS(s),并表明在 50 nM 总 Hg 下形成了 Hg-S 簇。我们的结果表明,Hg(ii)-硫化物的形态变化控制了过量半胱氨酸存在下 Hg(ii)与细胞的结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验