Banin U, Waiskopf N, Hammarström L, Boschloo G, Freitag M, Johansson E M J, Sá J, Tian H, Johnston M B, Herz L M, Milot R L, Kanatzidis M G, Ke W, Spanopoulos I, Kohlstedt K L, Schatz G C, Lewis N, Meyer T, Nozik A J, Beard M C, Armstrong F, Megarity C F, Schmuttenmaer C A, Batista V S, Brudvig G W
The Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden.
Nanotechnology. 2021 Jan 22;32(4):042003. doi: 10.1088/1361-6528/abbce8.
This roadmap on Nanotechnology for Catalysis and Solar Energy Conversion focuses on the application of nanotechnology in addressing the current challenges of energy conversion: 'high efficiency, stability, safety, and the potential for low-cost/scalable manufacturing' to quote from the contributed article by Nathan Lewis. This roadmap focuses on solar-to-fuel conversion, solar water splitting, solar photovoltaics and bio-catalysis. It includes dye-sensitized solar cells (DSSCs), perovskite solar cells, and organic photovoltaics. Smart engineering of colloidal quantum materials and nanostructured electrodes will improve solar-to-fuel conversion efficiency, as described in the articles by Waiskopf and Banin and Meyer. Semiconductor nanoparticles will also improve solar energy conversion efficiency, as discussed by Boschloo et al in their article on DSSCs. Perovskite solar cells have advanced rapidly in recent years, including new ideas on 2D and 3D hybrid halide perovskites, as described by Spanopoulos et al 'Next generation' solar cells using multiple exciton generation (MEG) from hot carriers, described in the article by Nozik and Beard, could lead to remarkable improvement in photovoltaic efficiency by using quantization effects in semiconductor nanostructures (quantum dots, wires or wells). These challenges will not be met without simultaneous improvement in nanoscale characterization methods. Terahertz spectroscopy, discussed in the article by Milot et al is one example of a method that is overcoming the difficulties associated with nanoscale materials characterization by avoiding electrical contacts to nanoparticles, allowing characterization during device operation, and enabling characterization of a single nanoparticle. Besides experimental advances, computational science is also meeting the challenges of nanomaterials synthesis. The article by Kohlstedt and Schatz discusses the computational frameworks being used to predict structure-property relationships in materials and devices, including machine learning methods, with an emphasis on organic photovoltaics. The contribution by Megarity and Armstrong presents the 'electrochemical leaf' for improvements in electrochemistry and beyond. In addition, biohybrid approaches can take advantage of efficient and specific enzyme catalysts. These articles present the nanoscience and technology at the forefront of renewable energy development that will have significant benefits to society.
这份《纳米技术用于催化与太阳能转换路线图》聚焦于纳米技术在应对当前能源转换挑战方面的应用:引用内森·刘易斯所撰投稿文章中的话来说,即“高效、稳定、安全以及低成本/可扩展制造的潜力”。本路线图聚焦于太阳能到燃料的转换、太阳能水分解、太阳能光伏以及生物催化。它涵盖了染料敏化太阳能电池(DSSC)、钙钛矿太阳能电池以及有机光伏。如魏斯科夫、巴宁和迈耶的文章中所述,对胶体量子材料和纳米结构电极进行智能工程设计将提高太阳能到燃料的转换效率。正如博施洛等人在其关于染料敏化太阳能电池的文章中所讨论的,半导体纳米颗粒也将提高太阳能转换效率。近年来,钙钛矿太阳能电池发展迅速,包括关于二维和三维混合卤化物钙钛矿的新想法,如斯帕诺普洛斯等人所述。诺齐克和比尔德的文章中描述的利用热载流子产生多激子(MEG)的“下一代”太阳能电池,通过利用半导体纳米结构(量子点、线或阱)中的量子化效应,可能会使光伏效率得到显著提高。如果纳米级表征方法不同时改进,这些挑战将无法得到解决。米洛特等人的文章中讨论的太赫兹光谱学就是一种方法的例子,它通过避免与纳米颗粒进行电接触、允许在器件运行期间进行表征以及能够对单个纳米颗粒进行表征,克服了与纳米级材料表征相关的困难。除了实验进展之外,计算科学也在应对纳米材料合成的挑战。科尔施泰特和沙茨的文章讨论了用于预测材料和器件中结构 - 性能关系的计算框架,包括机器学习方法,重点是有机光伏。梅加里蒂和阿姆斯特朗的贡献展示了用于改进电化学及其他领域的“电化学叶片”。此外,生物杂交方法可以利用高效且特异的酶催化剂。这些文章展示了处于可再生能源发展前沿的纳米科学和技术,它们将给社会带来重大益处。