Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Cancer Cell. 2020 Dec 14;38(6):829-843.e4. doi: 10.1016/j.ccell.2020.10.008. Epub 2020 Nov 5.
Perturbation biology is a powerful approach to modeling quantitative cellular behaviors and understanding detailed disease mechanisms. However, large-scale protein response resources of cancer cell lines to perturbations are not available, resulting in a critical knowledge gap. Here we generated and compiled perturbed expression profiles of ∼210 clinically relevant proteins in >12,000 cancer cell line samples in response to ∼170 drug compounds using reverse-phase protein arrays. We show that integrating perturbed protein response signals provides mechanistic insights into drug resistance, increases the predictive power for drug sensitivity, and helps identify effective drug combinations. We build a systematic map of "protein-drug" connectivity and develop a user-friendly data portal for community use. Our study provides a rich resource to investigate the behaviors of cancer cells and the dependencies of treatment responses, thereby enabling a broad range of biomedical applications.
扰动生物学是一种强大的方法,可以模拟定量的细胞行为并理解详细的疾病机制。然而,扰动下的癌症细胞系的大规模蛋白质反应资源尚不可用,导致了一个关键的知识空白。在这里,我们使用反相蛋白阵列生成并编译了约 210 种临床相关蛋白在超过 12000 个癌症细胞系样本中对约 170 种药物化合物的扰动表达谱。我们表明,整合扰动蛋白质反应信号可以深入了解药物耐药性的机制,提高药物敏感性的预测能力,并有助于识别有效的药物组合。我们构建了一个“蛋白质-药物”连接的系统图,并开发了一个用户友好的数据门户供社区使用。我们的研究提供了一个丰富的资源来研究癌细胞的行为和治疗反应的依赖性,从而能够实现广泛的生物医学应用。