Suppr超能文献

大规模鉴定临床相关蛋白在癌细胞系中的药物反应

Large-Scale Characterization of Drug Responses of Clinically Relevant Proteins in Cancer Cell Lines.

机构信息

Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Cancer Cell. 2020 Dec 14;38(6):829-843.e4. doi: 10.1016/j.ccell.2020.10.008. Epub 2020 Nov 5.

Abstract

Perturbation biology is a powerful approach to modeling quantitative cellular behaviors and understanding detailed disease mechanisms. However, large-scale protein response resources of cancer cell lines to perturbations are not available, resulting in a critical knowledge gap. Here we generated and compiled perturbed expression profiles of ∼210 clinically relevant proteins in >12,000 cancer cell line samples in response to ∼170 drug compounds using reverse-phase protein arrays. We show that integrating perturbed protein response signals provides mechanistic insights into drug resistance, increases the predictive power for drug sensitivity, and helps identify effective drug combinations. We build a systematic map of "protein-drug" connectivity and develop a user-friendly data portal for community use. Our study provides a rich resource to investigate the behaviors of cancer cells and the dependencies of treatment responses, thereby enabling a broad range of biomedical applications.

摘要

扰动生物学是一种强大的方法,可以模拟定量的细胞行为并理解详细的疾病机制。然而,扰动下的癌症细胞系的大规模蛋白质反应资源尚不可用,导致了一个关键的知识空白。在这里,我们使用反相蛋白阵列生成并编译了约 210 种临床相关蛋白在超过 12000 个癌症细胞系样本中对约 170 种药物化合物的扰动表达谱。我们表明,整合扰动蛋白质反应信号可以深入了解药物耐药性的机制,提高药物敏感性的预测能力,并有助于识别有效的药物组合。我们构建了一个“蛋白质-药物”连接的系统图,并开发了一个用户友好的数据门户供社区使用。我们的研究提供了一个丰富的资源来研究癌细胞的行为和治疗反应的依赖性,从而能够实现广泛的生物医学应用。

相似文献

1
Large-Scale Characterization of Drug Responses of Clinically Relevant Proteins in Cancer Cell Lines.
Cancer Cell. 2020 Dec 14;38(6):829-843.e4. doi: 10.1016/j.ccell.2020.10.008. Epub 2020 Nov 5.
3
Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays.
Cancer Cell. 2017 Feb 13;31(2):225-239. doi: 10.1016/j.ccell.2017.01.005.
5
Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications.
Am Soc Clin Oncol Educ Book. 2014:e504-10. doi: 10.14694/EdBook_AM.2014.34.e504.
6
Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset.
Cancer Discov. 2015 Nov;5(11):1210-23. doi: 10.1158/2159-8290.CD-15-0235. Epub 2015 Oct 19.
7
8
Exploring Proteomic Drug Targets, Therapeutic Strategies and Protein - Protein Interactions in Cancer: Mechanistic View.
Curr Cancer Drug Targets. 2019;19(6):430-448. doi: 10.2174/1568009618666180803104631.
9
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Nature. 2019 May;569(7757):503-508. doi: 10.1038/s41586-019-1186-3. Epub 2019 May 8.
10
Target Inhibition Maps Based on Responses to Kinase Inhibitors.
Methods Mol Biol. 2017;1636:507-522. doi: 10.1007/978-1-4939-7154-1_31.

引用本文的文献

1
Application of perturbation gene expression profiles in drug discovery-From mechanism of action to quantitative modelling.
Front Syst Biol. 2023 Feb 9;3:1126044. doi: 10.3389/fsysb.2023.1126044. eCollection 2023.
2
Deep learning-driven drug response prediction and mechanistic insights in cancer genomics.
Sci Rep. 2025 Jul 1;15(1):20824. doi: 10.1038/s41598-025-91571-2.
4
Cancer-on-a-chip for precision cancer medicine.
Lab Chip. 2025 May 16. doi: 10.1039/d4lc01043d.
5
Causal models and prediction in cell line perturbation experiments.
BMC Bioinformatics. 2025 Jan 7;26(1):4. doi: 10.1186/s12859-024-06027-7.
6
AI-empowered perturbation proteomics for complex biological systems.
Cell Genom. 2024 Nov 13;4(11):100691. doi: 10.1016/j.xgen.2024.100691. Epub 2024 Nov 1.
8
Comparative case study on NAMs: towards enhancing specific target organ toxicity analysis.
Arch Toxicol. 2024 Nov;98(11):3641-3658. doi: 10.1007/s00204-024-03839-7. Epub 2024 Aug 29.
9
Predicting single-cell cellular responses to perturbations using cycle consistency learning.
Bioinformatics. 2024 Jun 28;40(Suppl 1):i462-i470. doi: 10.1093/bioinformatics/btae248.
10
Graph Structured Neural Networks for Perturbation Biology.
bioRxiv. 2024 Feb 29:2024.02.28.582164. doi: 10.1101/2024.02.28.582164.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验