Suppr超能文献

人工智能增强的扰动蛋白质组学用于复杂生物系统。

AI-empowered perturbation proteomics for complex biological systems.

机构信息

School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China; Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China.

Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.

出版信息

Cell Genom. 2024 Nov 13;4(11):100691. doi: 10.1016/j.xgen.2024.100691. Epub 2024 Nov 1.

Abstract

The insufficient availability of comprehensive protein-level perturbation data is impeding the widespread adoption of systems biology. In this perspective, we introduce the rationale, essentiality, and practicality of perturbation proteomics. Biological systems are perturbed with diverse biological, chemical, and/or physical factors, followed by proteomic measurements at various levels, including changes in protein expression and turnover, post-translational modifications, protein interactions, transport, and localization, along with phenotypic data. Computational models, employing traditional machine learning or deep learning, identify or predict perturbation responses, mechanisms of action, and protein functions, aiding in therapy selection, compound design, and efficient experiment design. We propose to outline a generic PMMP (perturbation, measurement, modeling to prediction) pipeline and build foundation models or other suitable mathematical models based on large-scale perturbation proteomic data. Finally, we contrast modeling between artificially and naturally perturbed systems and highlight the importance of perturbation proteomics for advancing our understanding and predictive modeling of biological systems.

摘要

综合性蛋白质水平扰动数据的不足限制了系统生物学的广泛应用。在这篇观点文中,我们介绍了扰动蛋白质组学的原理、必要性和实用性。生物系统受到多种生物、化学和/或物理因素的干扰,随后在多个层面进行蛋白质组学测量,包括蛋白质表达和周转、翻译后修饰、蛋白质相互作用、运输和定位的变化,以及表型数据。计算模型,采用传统的机器学习或深度学习,识别或预测扰动反应、作用机制和蛋白质功能,辅助治疗选择、化合物设计和高效实验设计。我们建议概述一个通用的 PMMP(扰动、测量、建模到预测)管道,并基于大规模扰动蛋白质组学数据构建基础模型或其他合适的数学模型。最后,我们对比了人为和自然扰动系统的建模,并强调了扰动蛋白质组学对于推进我们对生物系统的理解和预测建模的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dbe/11605689/842f9d3b5e93/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验