Suppr超能文献

神经成分分析:一种用于脑电图分析的空间滤波器。

Neural component analysis: A spatial filter for electroencephalogram analysis.

作者信息

Daly Ian

机构信息

Brain-Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom.

出版信息

J Neurosci Methods. 2021 Jan 15;348:108987. doi: 10.1016/j.jneumeth.2020.108987. Epub 2020 Nov 4.

Abstract

BACKGROUND

Spatial filtering and source separation are valuable tools in the analysis of EEG data. However, despite the well-known spatial localisation of individual cognitive processes within the brain, the available methods for source separation, such as the widely used blind source separation technique, do not take into account the spatial distributions and locations of sources. This can result in sub-optimal source identification.

NEW METHOD

We present a new method for deriving a spatial filter for EEG data that attempts to identify sources that are maximally spatially distinct from one another in terms of the spatial distributions of their projections.

RESULTS

We first evaluate our method with simulated EEG and show that it is able to separate EEG signals into components with distinct spatial distributions that closely resemble the original simulated sources. We also evaluate our method with real EEG and show it is able to identify a spatial filter that can be used to significantly improve classification accuracy of the P300 event-related potential (ERP).

COMPARISON WITH EXISTING METHODS

We compare our method to a state of the art blind source separation methods, fast independent component analysis (ICA) and common spatial patterns (CSP). We evaluate the methods suitability for a common source separation application, analysis of ERPs.

CONCLUSIONS

Our results show that our method is well suited to identifying spatial filters for EEG analysis. This has potential applications in a wide range of EEG signal processing applications.

摘要

背景

空间滤波和源分离是脑电图(EEG)数据分析中的重要工具。然而,尽管大脑中各个认知过程的空间定位已为人熟知,但现有的源分离方法,如广泛使用的盲源分离技术,并未考虑源的空间分布和位置。这可能导致源识别效果欠佳。

新方法

我们提出了一种为EEG数据推导空间滤波器的新方法,该方法试图根据源投影的空间分布来识别在空间上彼此最大程度不同的源。

结果

我们首先用模拟EEG评估我们的方法,结果表明它能够将EEG信号分离成具有不同空间分布的成分,这些成分与原始模拟源非常相似。我们还用真实EEG评估了我们的方法,结果表明它能够识别一个空间滤波器,该滤波器可用于显著提高P300事件相关电位(ERP)的分类准确率。

与现有方法的比较

我们将我们的方法与一种先进的盲源分离方法、快速独立成分分析(ICA)和共同空间模式(CSP)进行了比较。我们评估了这些方法在一个常见的源分离应用——ERP分析中的适用性。

结论

我们的结果表明,我们的方法非常适合为EEG分析识别空间滤波器。这在广泛的EEG信号处理应用中具有潜在的应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验