Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.
J Neurophysiol. 2021 Feb 1;125(2):509-521. doi: 10.1152/jn.00560.2019. Epub 2020 Nov 11.
Spatial EEG filters are widely used to isolate event-related potential (ERP) components. The most commonly used spatial filters (e.g., the average reference and the surface Laplacian) are "stationary." Stationary filters are conceptually simple, easy to use, and fast to compute, but all assume that the EEG signal does not change across sensors and time. Given that ERPs are intrinsically nonstationary, applying stationary filters can lead to misinterpretations of the measured neural activity. In contrast, "adaptive" spatial filters (e.g., independent component analysis, ICA; and principal component analysis, PCA) infer their weights directly from the spatial properties of the data. They are, thus, not affected by the shortcomings of stationary filters. The issue with adaptive filters is that understanding how they work and how to interpret their output require advanced statistical and physiological knowledge. Here, we describe a novel, easy-to-use, and conceptually simple adaptive filter (local spatial analysis, LSA) for highlighting local components masked by large widespread activity. This approach exploits the statistical information stored in the trial-by-trial variability of stimulus-evoked neural activity to estimate the spatial filter parameters adaptively at each time point. Using both simulated data and real ERPs elicited by stimuli of four different sensory modalities (audition, vision, touch, and pain), we show that this method outperforms widely used stationary filters and allows to identify novel ERP components masked by large widespread activity. Implementation of the LSA filter in MATLAB is freely available to download. EEG spatial filtering is important for exploring brain function. Two classes of filters are commonly used: stationary and adaptive. Stationary filters are simple to use but wrongly assume that stimulus-evoked EEG responses (ERPs) are stationary. Adaptive filters do not make this assumption but require solid statistical and physiological knowledge. Bridging this gap, we present local spatial analysis (LSA), an adaptive, yet computationally simple, spatial filter based on linear regression that separates local and widespread brain activity (https://www.iannettilab.net/lsa.html or https://github.com/rorybufacchi/LSA-filter).
空间 EEG 滤波器广泛用于分离事件相关电位 (ERP) 成分。最常用的空间滤波器(例如平均参考和表面拉普拉斯)是“固定的”。固定滤波器概念简单,易于使用,计算速度快,但都假设 EEG 信号在传感器和时间上不会发生变化。鉴于 ERP 本质上是非平稳的,应用固定滤波器可能导致对测量的神经活动的误解。相比之下,“自适应”空间滤波器(例如独立成分分析 (ICA) 和主成分分析 (PCA))直接从数据的空间特性推断其权重。因此,它们不受固定滤波器缺点的影响。自适应滤波器的问题是,要了解它们的工作原理以及如何解释它们的输出,需要高级的统计和生理知识。在这里,我们描述了一种新颖、易于使用且概念简单的自适应滤波器(局部空间分析,LSA),用于突出由大而广泛的活动掩盖的局部成分。这种方法利用存储在刺激诱发神经活动的逐次试验变异性中的统计信息,自适应地估计每个时间点的空间滤波器参数。使用模拟数据和由四种不同感觉模态(听觉、视觉、触觉和疼痛)刺激引起的真实 ERP,我们表明该方法优于广泛使用的固定滤波器,并能够识别由大而广泛的活动掩盖的新的 ERP 成分。LSA 滤波器的 MATLAB 实现可免费下载。EEG 空间滤波对于探索大脑功能很重要。通常使用两类滤波器:固定滤波器和自适应滤波器。固定滤波器易于使用,但错误地假设刺激诱发的 EEG 响应(ERP)是固定的。自适应滤波器不做此假设,但需要扎实的统计和生理知识。为了弥合这一差距,我们提出了局部空间分析 (LSA),这是一种基于线性回归的自适应但计算简单的空间滤波器,可分离局部和广泛的大脑活动(https://www.iannettilab.net/lsa.html 或 https://github.com/rorybufacchi/LSA-filter)。