Suppr超能文献

基于随机森林回归模型的高频传感器对河流氮磷浓度的预测。

Prediction of stream nitrogen and phosphorus concentrations from high-frequency sensors using Random Forests Regression.

机构信息

Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.

Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, 110 Eighth St., Troy, NY 12180, USA.

出版信息

Sci Total Environ. 2021 Apr 1;763:143005. doi: 10.1016/j.scitotenv.2020.143005. Epub 2020 Oct 20.

Abstract

Stream nutrient concentrations exhibit marked temporal variation due to hydrology and other factors such as the seasonality of biological processes. Many water quality monitoring programs sample too infrequently (i.e., weekly or monthly) to fully characterize lotic nutrient conditions and to accurately estimate nutrient loadings. A popular solution to this problem is the surrogate-regression approach, a method by which nutrient concentrations are estimated from related parameters (e.g., conductivity or turbidity) that can easily be measured in situ at high frequency using sensors. However, stream water quality data often exhibit skewed distributions, nonlinear relationships, and multicollinearity, all of which can be problematic for linear-regression models. Here, we use a flexible and robust machine learning technique, Random Forests Regression (RFR), to estimate stream nitrogen (N) and phosphorus (P) concentrations from sensor data within a forested, mountainous drainage area in upstate New York. When compared to actual nutrient data from samples tested in the laboratory, this approach explained much of the variation in nitrate (89%), total N (85%), particulate P (76%), and total P (74%). The models were less accurate for total soluble P (47%) and soluble reactive P (32%), though concentrations of these latter parameters were in a relatively low range. Although soil moisture and fluorescent dissolved organic matter are not commonly used as surrogates in nutrient-regression models, they were important predictors in this study. We conclude that RFR shows great promise as a tool for modeling instantaneous stream nutrient concentrations from high-frequency sensor data, and encourage others to evaluate this approach for supplementing traditional (laboratory-determined) nutrient datasets.

摘要

由于水文学和生物过程季节性等因素,水流的营养物质浓度表现出明显的时间变化。许多水质监测计划的采样频率太低(即每周或每月),无法全面描述流水的营养状况,也无法准确估算营养负荷。解决这个问题的一种流行方法是替代回归方法,该方法通过使用传感器以高频原位测量相关参数(例如电导率或浊度)来估算营养物浓度。然而,溪流水质数据通常呈偏态分布、非线性关系和多重共线性,所有这些都会对线性回归模型造成问题。在这里,我们使用灵活且强大的机器学习技术——随机森林回归(RFR),来估算纽约州北部一个森林山区流域内传感器数据中的溪流氮(N)和磷(P)浓度。与实验室测试的实际养分数据相比,该方法解释了硝酸盐(89%)、总氮(85%)、颗粒磷(76%)和总磷(74%)变化的大部分。该模型对于总可溶磷(47%)和可反应性磷(32%)的准确性较低,尽管这些参数的浓度处于相对较低的范围。尽管土壤湿度和荧光溶解有机物在营养物回归模型中通常不作为替代物使用,但它们在本研究中是重要的预测因子。我们得出结论,RFR 作为一种从高频传感器数据建模即时溪流营养物浓度的工具具有很大的应用潜力,并鼓励其他人评估该方法以补充传统(实验室确定)的营养数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验