Dikmen Faruk, Demir Ahmet, Özkaya Bestami, Raza Muhammad Owais, Rasheed Jawad, Asuroglu Tunc, Alsubai Shtwai
Department of Environmental Engineering, Yildiz Technical University, 34220, Istanbul, Turkey.
Department of Civil Engineering, Istinye University, 34396, Istanbul, Turkey.
Sci Rep. 2025 Jul 14;15(1):25347. doi: 10.1038/s41598-025-07124-0.
The integration of artificial intelligence (AI) in wastewater treatment management offers a promising approach to optimizing effluent quality predictions and enhancing operational efficiency. This study evaluates the performance of machine learning models in predicting key wastewater effluent parameters Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), Total Effluent Nitrogen and Total Effluent Phosphorus. Three feature selection techniques were applied: SelectKBest, Mutual Information, and Recursive Feature Elimination (RFE) using Random Forest to identify the most significant predictors. The study leveraged ensemble learning models, including XGBoost, Random Forest, Gradient Boosting, and LightGBM, and compared them with Decision Tree models. The results demonstrate that effluent volatile suspended solids (VSS) consistently held the highest predictive importance across all feature selection methods. Ensemble models significantly outperformed Decision Trees, with Gradient Boosting achieving the best predictive accuracy for TSS and total nitrogen (Mean Absolute Error (MAE): 3.667 [Formula: see text]: 97.53), XGBoost excelling in COD prediction with MAE and [Formula: see text] of 6.251 and 83. 41%, respectively, and XGBoost showing superior performance for BOD (MAE: 1.589 [Formula: see text]:79.64%). LightGBM yielded the highest precision in predicting total phosphate with MAE and a [Formula: see text] score of 0.230 and 28. 68%, respectively. Decision tree models consistently underperformed, exhibiting the highest error rates. These findings highlight the potential of AI-driven approaches in wastewater management to improve decision-making, regulatory compliance, and resource efficiency. However, limitations such as operational irregularities and seasonal variations remain challenges for further refinement.
人工智能(AI)在污水处理管理中的整合为优化出水水质预测和提高运营效率提供了一种很有前景的方法。本研究评估了机器学习模型在预测关键废水排放参数化学需氧量(COD)、生化需氧量(BOD)、总悬浮固体(TSS)、总排放氮和总排放磷方面的性能。应用了三种特征选择技术:使用随机森林的SelectKBest、互信息和递归特征消除(RFE),以识别最重要的预测因子。该研究利用了集成学习模型,包括XGBoost、随机森林、梯度提升和LightGBM,并将它们与决策树模型进行了比较。结果表明,在所有特征选择方法中,出水挥发性悬浮固体(VSS)始终具有最高的预测重要性。集成模型明显优于决策树,梯度提升在TSS和总氮预测方面达到了最佳预测精度(平均绝对误差(MAE):3.667 [公式:见原文];[公式:见原文]:97.53),XGBoost在COD预测方面表现出色,MAE为6.251,[公式:见原文]为83.41%,并且在BOD预测方面表现卓越(MAE:1.589 [公式:见原文]:79.64%)。LightGBM在预测总磷方面具有最高的精度,MAE和[公式:见原文]得分分别为0.230和28.68%。决策树模型始终表现不佳,错误率最高。这些发现凸显了人工智能驱动方法在废水管理中改善决策、合规监管和资源效率的潜力。然而,诸如运行不规则和季节变化等限制仍然是进一步优化的挑战。