Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL, USA.
FEBS Lett. 2021 Mar;595(6):735-749. doi: 10.1002/1873-3468.13992. Epub 2020 Dec 10.
P-glycoprotein (Pgp) is a member of the ABC transporter superfamily with high physiological importance. Pgp nucleotide-binding domains (NBDs) drive the transport cycle through ATP binding and hydrolysis. We use molecular dynamics simulations to investigate the ATP hydrolysis-induced conformational changes in NBDs. Five systems, including all possible ATP/ADP combinations in the NBDs and the APO system, are simulated. ATP/ADP exchange induces conformational changes mostly within the conserved signature motif of the NBDs, resulting in relative orientational changes in the NBDs. Nucleotide removal leads to additional orientational changes in the NBDs, allowing their dissociation. Furthermore, we capture putative hydrolysis-competent configurations in which the conserved glutamate in the Walker-B motif acts as a catalytic base capturing a water molecule likely initiating ATP hydrolysis.
P-糖蛋白(Pgp)是 ABC 转运体超家族的一员,具有重要的生理功能。Pgp 的核苷酸结合域(NBD)通过与 ATP 结合和水解驱动转运循环。我们使用分子动力学模拟来研究 ATP 水解诱导的 NBD 构象变化。模拟了五个系统,包括 NBD 中所有可能的 ATP/ADP 组合和 APO 系统。ATP/ADP 交换主要引起 NBD 保守签名模体中的构象变化,导致 NBD 相对取向的变化。核苷酸的去除导致 NBD 发生额外的取向变化,允许它们解离。此外,我们捕获了可能具有水解能力的构象,其中 Walker-B 模体中的保守谷氨酸作为催化碱,捕获一个水分子,可能引发 ATP 水解。