Suppr超能文献

扩展系综对接以探究蛋白质大规模结构变化过程中配体结合位点的动态变化。

Extended-ensemble docking to probe dynamic variation of ligand binding sites during large-scale structural changes of proteins.

作者信息

Kapoor Karan, Thangapandian Sundar, Tajkhorshid Emad

机构信息

Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA

出版信息

Chem Sci. 2022 Mar 16;13(14):4150-4169. doi: 10.1039/d2sc00841f. eCollection 2022 Apr 6.

Abstract

Proteins can sample a broad landscape as they undergo conformational transition between different functional states. At the same time, as key players in almost all cellular processes, proteins are important drug targets. Considering the different conformational states of a protein is therefore central for a successful drug-design strategy. Here we introduce a novel docking protocol, termed extended-ensemble docking, pertaining to proteins that undergo large-scale (global) conformational changes during their function. In its application to multidrug ABC-transporter P-glycoprotein (Pgp), extensive non-equilibrium molecular dynamics simulations employing system-specific collective variables are first used to describe the transition cycle of the transporter. An extended set of conformations (extended ensemble) representing the full transition cycle between the inward- and the outward-facing states is then used to seed high-throughput docking calculations of known substrates, non-substrates, and modulators of the transporter. Large differences are predicted in the binding affinities to different conformations, with compounds showing stronger binding affinities to intermediate conformations compared to the starting crystal structure. Hierarchical clustering of the binding modes shows all ligands preferably bind to the large central cavity of the protein, formed at the apex of the transmembrane domain (TMD), whereas only small binding populations are observed in the previously described R and H sites present within the individual TMD leaflets. Based on the results, the central cavity is further divided into two major subsites, first preferably binding smaller substrates and high-affinity inhibitors, whereas the second one shows preference for larger substrates and low-affinity modulators. These central subsites along with the low-affinity interaction sites present within the individual TMD leaflets may respectively correspond to the proposed high- and low-affinity binding sites in Pgp. We propose further an optimization strategy for developing more potent inhibitors of Pgp, based on increasing its specificity to the extended ensemble of the protein, instead of using a single protein structure, as well as its selectivity for the high-affinity binding site. In contrast to earlier studies using single static structures of Pgp, our results show better agreement with experimental studies, pointing to the importance of incorporating the global conformational flexibility of proteins in future drug-discovery endeavors.

摘要

蛋白质在不同功能状态之间进行构象转变时,可以探索广阔的构象空间。同时,作为几乎所有细胞过程中的关键参与者,蛋白质是重要的药物靶点。因此,考虑蛋白质的不同构象状态对于成功的药物设计策略至关重要。在此,我们引入了一种新颖的对接协议,称为扩展系综对接,适用于在其功能过程中经历大规模(全局)构象变化的蛋白质。在将其应用于多药ABC转运蛋白P-糖蛋白(Pgp)时,首先使用基于系统特定集体变量的广泛非平衡分子动力学模拟来描述转运蛋白的转变循环。然后,使用一组代表向内和向外状态之间完整转变循环的扩展构象(扩展系综)来启动对转运蛋白已知底物、非底物和调节剂的高通量对接计算。预测不同构象的结合亲和力存在很大差异,与起始晶体结构相比,化合物对中间构象显示出更强的结合亲和力。结合模式的层次聚类表明,所有配体都优先结合到蛋白质的大中央腔,该腔形成于跨膜结构域(TMD)的顶端,而在各个TMD小叶中存在的先前描述的R和H位点中仅观察到少量结合群体。基于这些结果,中央腔进一步分为两个主要亚位点,第一个亚位点优先结合较小的底物和高亲和力抑制剂,而第二个亚位点则偏好较大的底物和低亲和力调节剂。这些中央亚位点以及各个TMD小叶中存在的低亲和力相互作用位点可能分别对应于Pgp中提出的高亲和力和低亲和力结合位点。我们还提出了一种优化策略,用于开发更有效的Pgp抑制剂,该策略基于提高其对蛋白质扩展系综的特异性,而不是使用单一蛋白质结构,以及其对高亲和力结合位点的选择性。与早期使用Pgp单一静态结构的研究相比,我们的结果与实验研究显示出更好的一致性,这表明在未来的药物发现工作中纳入蛋白质的全局构象灵活性非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6085/8985516/32a0e977a082/d2sc00841f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验