Suppr超能文献

生殖医学中的预测模型评估。

Evaluating predictive models in reproductive medicine.

机构信息

Colorado Center for Reproductive Medicine Orange County, Newport Beach, California.

IVF 2.0 LTD, Maghull, United Kingdom.

出版信息

Fertil Steril. 2020 Nov;114(5):921-926. doi: 10.1016/j.fertnstert.2020.09.159.

Abstract

Predictive modeling has become a distinct subdiscipline of reproductive medicine, and researchers and clinicians are just learning the skills and expertise to evaluate artificial intelligence (AI) studies. Diagnostic tests and model predictions are subject to evaluation. Their use offers potential for both harm and benefit in terms of diagnosis, treatment, and prognosis. The performance of AI models and their potential clinical utility hinge on the quality and size of the databases used, the types and distribution of data, and the particular AI method applied. Additionally, when images are involved, the method of capturing, preprocessing, and treatment and accurate labeling of images becomes an important component of AI modeling. Inconsistent image treatment or inaccurate labeling of images can lead to an inconsistent database, resulting in poor AI accuracy. We discuss the critical appraisal of AI models in reproductive medicine and convey the importance of transparency and standardization in reporting AI models so that the risk of bias and the potential clinical utility of AI can be assessed.

摘要

预测建模已经成为生殖医学的一个独特分支,研究人员和临床医生才刚刚开始掌握评估人工智能 (AI) 研究的技能和专业知识。诊断测试和模型预测都需要进行评估。就诊断、治疗和预后而言,它们的使用既有潜在的危害,也有潜在的益处。AI 模型的性能及其潜在的临床实用性取决于所使用的数据库的质量和大小、数据的类型和分布,以及所应用的特定 AI 方法。此外,当涉及到图像时,图像的采集、预处理和处理以及图像的准确标注成为 AI 建模的重要组成部分。不一致的图像处理或图像的不准确标注会导致数据库不一致,从而导致 AI 精度下降。我们讨论了生殖医学中 AI 模型的关键评估,并传达了报告 AI 模型时透明性和标准化的重要性,以便能够评估 AI 的偏倚风险和潜在临床实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验