Vitrolife A/S, Jens Juuls Vej 18-20, 8260, Viby J, Denmark.
Section for Biostatistics, Department of Public Health, Aarhus University, Aarhus, Denmark.
J Assist Reprod Genet. 2023 Sep;40(9):2129-2137. doi: 10.1007/s10815-023-02871-3. Epub 2023 Jul 10.
This article aims to assess how differences in maternal age distributions between IVF clinics affect the performance of an artificial intelligence model for embryo viability prediction and proposes a method to account for such differences.
Using retrospectively collected data from 4805 fresh and frozen single blastocyst transfers of embryos incubated for 5 to 6 days, the discriminative performance was assessed based on fetal heartbeat outcomes. The data was collected from 4 clinics, and the discrimination was measured in terms of the area under ROC curves (AUC) for each clinic. To account for the different age distributions between clinics, a method for age-standardizing the AUCs was developed in which the clinic-specific AUCs were standardized using weights for each embryo according to the relative frequency of the maternal age in the relevant clinic compared to the age distribution in a common reference population.
There was substantial variation in the clinic-specific AUCs with estimates ranging from 0.58 to 0.69 before standardization. The age-standardization of the AUCs reduced the between-clinic variance by 16%. Most notably, three of the clinics had quite similar AUCs after standardization, while the last clinic had a markedly lower AUC both with and without standardization.
The method of using age-standardization of the AUCs that is proposed in this article mitigates some of the variability between clinics. This enables a comparison of clinic-specific AUCs where the difference in age distributions is accounted for.
本文旨在评估体外受精(IVF)诊所之间产妇年龄分布的差异如何影响胚胎活力预测人工智能模型的性能,并提出一种考虑这种差异的方法。
使用从 4 家诊所收集的 4805 例新鲜和冷冻 5 至 6 天培养的单个囊胚转移的回顾性数据,根据胎儿心跳结果评估鉴别性能。该数据来自 4 家诊所,每家诊所的鉴别能力均通过 ROC 曲线下面积(AUC)来衡量。为了考虑到诊所之间的不同年龄分布,开发了一种 AUC 年龄标准化的方法,其中根据胚胎的母龄与常见参考人群中的年龄分布的相对频率,为每个胚胎分配权重,对诊所特异性 AUC 进行标准化。
在标准化之前,诊所特异性 AUC 的估计值范围从 0.58 到 0.69,存在很大差异。AUC 的年龄标准化将诊所之间的变异性降低了 16%。值得注意的是,标准化后,有 3 家诊所的 AUC 非常相似,而最后一家诊所无论是否标准化,其 AUC 都明显较低。
本文提出的 AUC 年龄标准化方法可以减轻诊所之间的一些变异性。这使得可以比较考虑了年龄分布差异的特定诊所的 AUC。