Suppr超能文献

三维剂量分布的放射组学分析预测肺癌放疗毒性

Radiomics analysis of 3D dose distributions to predict toxicity of radiotherapy for lung cancer.

机构信息

Radiation Oncology Department, University Hospital, Brest, France; LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France.

LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France.

出版信息

Radiother Oncol. 2021 Feb;155:144-150. doi: 10.1016/j.radonc.2020.10.040. Epub 2020 Nov 6.

Abstract

PURPOSE

(Chemo)-radiotherapy (RT) is the gold standard treatment for patients with locally advanced lung cancer non accessible for surgery. However, current toxicity prediction models rely on clinical and dose volume histograms (DVHs) and remain unsufficient. The goal of this work is to investigate the added predictive value of the radiomics approach applied to dose maps regarding acute and late toxicities in both the lungs and esophagus.

METHODS

Acute and late toxicities scored using the CTCAE v4.0 were retrospectively collected on patients treated with RT in our institution. Radiomic features were extracted from 3D dose maps considering Gy values as grey-levels in images. DVH and usual clinical factors were also considered. Three toxicity prediction models (clinical only, clinical + DVH and combined, i.e., including clinical + DVH + radiomics) were incrementally trained using a neural network on 70% of the patients for prediction of grade ≥2 acute and late pulmonary toxicities (APT/LPT) and grade ≥2 acute esophageal toxicities (AET). After bootstrapping (n = 1000), optimal cut-off values were determined based on the Youden Index. The trained models were then evaluated in the remaining 30% of patients using balanced accuracy (BAcc).

RESULTS

167 patients were treated from 2015 to 2018: 78% non small-cell lung cancers, 14% small-cell lung cancers and 8% other histology with a median age at treatment of 66 years. Respectively, 22.2%, 16.8% and 30.0% experienced APT, LPT and AET. In the training set (n = 117), the corresponding BAcc for clinical only/clinical + DVH/combined were 0.68/0.79/0.92, 0.66/0.77/0.87 and 0.68/0.73/0.84. In the testing evaluation (n = 50), these trained models obtained a corresponding BAcc of 0.69/0.69/0.92, 0.76/0.80/0.89 and 0.58/0.73/0.72.

CONCLUSION

In patients with a lung cancer treated with RT, radiomic features extracted from 3D dose maps seem to surpass usual models based on clinical factors and DVHs for the prediction of APT and LPT.

摘要

目的

(化)放疗(RT)是局部晚期肺癌患者手术不可及的金标准治疗方法。然而,目前的毒性预测模型依赖于临床和剂量体积直方图(DVH),仍然不够充分。本研究的目的是探讨放射组学方法在剂量图上的应用对肺部和食管急性和迟发性毒性的预测价值。

方法

回顾性收集我院接受 RT 治疗的患者的 CTCAE v4.0 评分的急性和迟发性毒性。从 3D 剂量图中提取放射组学特征,将 Gy 值视为图像中的灰度级。还考虑了 DVH 和常用的临床因素。使用神经网络在 70%的患者中对三种毒性预测模型(仅临床、临床+DVH 和联合,即包括临床+DVH+放射组学)进行增量训练,以预测≥2 级急性和迟发性肺毒性(APT/LPT)和≥2 级急性食管毒性(AET)。在自举(n=1000)后,基于约登指数确定最佳截断值。然后,使用平衡准确率(BAcc)在剩余的 30%患者中评估训练好的模型。

结果

2015 年至 2018 年间,共治疗了 167 名患者:78%为非小细胞肺癌,14%为小细胞肺癌,8%为其他组织学,治疗时的中位年龄为 66 岁。分别有 22.2%、16.8%和 30.0%的患者出现 APT、LPT 和 AET。在训练集中(n=117),仅临床/临床+DVH/联合的相应 BAcc 分别为 0.68/0.79/0.92、0.66/0.77/0.87 和 0.68/0.73/0.84。在测试评估中(n=50),这些训练好的模型的相应 BAcc 分别为 0.69/0.69/0.92、0.76/0.80/0.89 和 0.58/0.73/0.72。

结论

在接受 RT 治疗的肺癌患者中,从 3D 剂量图中提取的放射组学特征似乎优于基于临床因素和 DVH 的常规模型,可用于预测 APT 和 LPT。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验