Suppr超能文献

基于空间剂量分布模型预测局部晚期肺癌容积弧形调强放疗后急性肺毒性的前瞻性验证。

Development and prospective validation of a spatial dose pattern based model predicting acute pulmonary toxicity in patients treated with volumetric arc-therapy for locally advanced lung cancer.

机构信息

Department of Radiation Oncology, University Hospital, Brest, France; LaTIM UMR 1101 INSERM, University Brest, Brest, France.

Department of Radiation Oncology, University Hospital, Brest, France; LaTIM UMR 1101 INSERM, University Brest, Brest, France.

出版信息

Radiother Oncol. 2021 Nov;164:43-49. doi: 10.1016/j.radonc.2021.09.008. Epub 2021 Sep 20.

Abstract

INTRODUCTION

(Chemo)-radiotherapy is the standard treatment for patients with locally advanced lung cancer (LALC) not accessible to surgery. Despite strict application of dose constraints, acute toxicities such as acute pulmonary toxicity (APT) remain frequent, and may impact treatment's compliance and patients' quality of life. Previously, on a population treated with intensity-modulated photon therapy or passive scattering proton therapy, spatial dose patterns associated with APT were identified in the lower lungs, especially in the posterior right lung. In the present study, we aim to define these spatial dose patterns on a retrospective cohort treated by volumetric-arctherapy (VMAT) and to validate our findings prospectively.

METHODS

For the training cohort, we retrospectively included all patients treated in our institution by VMAT for a LALC between 2015 and 2018. APT was scored according to the CTCAE v4.0 scale. All dose maps were registered to a thorax phantom using a segmentation-based elastic registration. Voxel-based analysis of local dose differences was performed with a non-parametric permutation test accounting for n = 10.000 permutations, producing a 3-dimensional significance maps on which clusters of voxels that exhibited significant dose differences (p < 0.05) between the two toxicity groups (APT ≥ grade 2 vs APT < grade 2) were identified. A prediction model (Pmap-Model) was then built using a neural network approach and then applied to an observational prospective cohort for validation. The model was evaluated using the Area under the curve (AUC) and the balanced accuracy (Bacc: mean of the sensitivity and specificity).

RESULTS

165 and 42 patients were included in the training and validation cohorts, with respective APT rates of 22.4% and 19.1%. In the training cohort, a cluster of voxels (Pmap-region) was identified in the posterior right lung. In the training cohort, the Pmap-Model combining 11 features among which the mean dose to the Pmap-region resulted in an AUC of 0.99 and a Bacc of 99.2 using an 8% probability threshold. Using the same voxel cluster on the validation cohort, the Pmap-model resulted in an AUC of 0.81 and a Bacc of 82.0.

CONCLUSION

Our APT-prediction model was successfully validated in a prospective cohort treated by VMAT. Regional radiosensitivity should be considered in usual lung dose constraints, opening the possibility of easily implementable adaptive dosimetry planning.

摘要

介绍

(化)放疗法是局部晚期肺癌(LALC)不可手术患者的标准治疗方法。尽管严格应用剂量限制,但仍经常出现急性毒性,如急性肺毒性(APT),这可能影响治疗的依从性和患者的生活质量。以前,在接受强度调制光子治疗或被动散射质子治疗的人群中,已确定与 APT 相关的下肺部特别是右后肺的空间剂量模式。在本研究中,我们旨在通过容积弧形治疗(VMAT)定义回顾性队列中的这些空间剂量模式,并前瞻性验证我们的发现。

方法

在训练队列中,我们回顾性地纳入了 2015 年至 2018 年间在我院接受 VMAT 治疗的所有 LALC 患者。APT 根据 CTCAE v4.0 量表进行评分。所有剂量图均使用基于分割的弹性配准注册到胸部体模。使用非参数置换检验对局部剂量差异进行基于体素的分析,考虑到 n=10000 次置换,产生 3 维显著性图,其中显示两组(APT≥2 级与 APT<2 级)之间存在显著剂量差异的体素簇(p<0.05)。然后,使用神经网络方法构建预测模型(Pmap 模型),并将其应用于前瞻性观察队列进行验证。使用曲线下面积(AUC)和平衡准确性(Bacc:敏感性和特异性的平均值)评估模型。

结果

训练队列和验证队列分别纳入 165 例和 42 例患者,APT 发生率分别为 22.4%和 19.1%。在训练队列中,在后右肺中发现了一个体素簇(Pmap 区域)。在训练队列中,结合 Pmap 区域的平均剂量等 11 个特征的 Pmap 模型得到了 AUC 为 0.99 和 Bacc 为 99.2 的结果,使用 8%的概率阈值。在验证队列中使用相同的体素簇,Pmap 模型得到了 AUC 为 0.81 和 Bacc 为 82.0 的结果。

结论

我们的 APT 预测模型在接受 VMAT 治疗的前瞻性队列中得到了成功验证。在通常的肺剂量限制中应考虑区域性放射敏感性,这为实现简单的适应性剂量计划提供了可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验