Suppr超能文献

在生物炼制框架内同时进行 CO2 固存和生物燃料生产优化莱茵衣藻培养。

Optimization of Chlamydomonas reinhardtii cultivation with simultaneous CO sequestration and biofuels production in a biorefinery framework.

机构信息

Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India.

P K Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology, Kharagpur 721302, India.

出版信息

Sci Total Environ. 2021 Mar 25;762:143080. doi: 10.1016/j.scitotenv.2020.143080. Epub 2020 Oct 17.

Abstract

Algal biomass is regarded as a sustainable energy feedstock for the future. Enhancement of the biomass and metabolite production of microalgae increases the economic feasibility of the biofuel production process. The present study encompasses on bioethanol production from Chlamydomonas reinhardtii through a biorefinery approach. The biomass and carbohydrate productivity of C. reinhardtii UTEX 90 and CC 2656 were enhanced by optimizing the physico-chemical parameters. The following conditions were found suitable for the improvement of biomass and metabolite content of C. reinhardtii: pH 6.5-7.0, incubation temperature 30 °C, initial acetate and ammonium chloride concentration of 1.56 g L and 100-200 mg L, respectively. Under the optimized operational condition biomass and carbohydrate productivity of C. reinhardtii UTEX 90 and CC 2656 were 512 mg L d & 266.24 mg L d and 364 mg L d & 163.80 mg L d, respectively. The amount of CO sequestered during the cultivation process by UTEX 90 and CC 2656 were 113 mg L d and 74.95 mg L d, respectively. The depigmented and defatted carbohydrate rich biomass was considered as raw material for bioethanol production. The bioethanol yield range was 90-94% of the theoretical yield using Saccharomyces cerevisiae INVSC-1 in a double jacket reactor. To improve the viability of the process, the spent media after ethanol fermentation was subsequently used for methane production using mixed microbial consortium. The energy recovery from the process was 40.39% and 39.7% for UTEX 90 and CC 2656, respectively when C. reinhardtii biomass was used as substrate for biofuel production. The present investigation concedes with the potentiality of algae as a favourable 3rd generation feedstock to address the existing challenges of clean energy production with concomitant CO sequestration.

摘要

藻类生物质被视为未来可持续的能源原料。提高微藻的生物量和代谢产物的产量,增加了生物燃料生产过程的经济可行性。本研究通过生物炼制方法从莱茵衣藻生产生物乙醇。通过优化物理化学参数,提高了莱茵衣藻 UTEX 90 和 CC 2656 的生物质和碳水化合物生产力。以下条件适合提高莱茵衣藻的生物质和代谢产物含量:pH 值 6.5-7.0、培养温度 30°C、初始乙酸盐和氯化铵浓度分别为 1.56 g/L 和 100-200 mg/L。在优化的操作条件下,莱茵衣藻 UTEX 90 和 CC 2656 的生物质和碳水化合物生产力分别为 512 mg/L/d 和 266.24 mg/L/d、364 mg/L/d 和 163.80 mg/L/d。UTEX 90 和 CC 2656 在培养过程中固碳量分别为 113 mg/L/d 和 74.95 mg/L/d。经过去色素和脱脂处理的富含碳水化合物的生物质被认为是生物乙醇生产的原料。使用酿酒酵母 INVSC-1 在双层夹套式反应器中,生物乙醇的产率范围为理论产率的 90-94%。为了提高工艺的可行性,在用混合微生物共培养物进行乙醇发酵后,将用过的培养基随后用于甲烷生产。当使用莱茵衣藻生物质作为生物燃料生产的底物时,从该工艺中回收的能量分别为 UTEX 90 和 CC 2656 的 40.39%和 39.7%。本研究证实了藻类作为一种有利的第三代原料的潜力,可解决清洁能源生产中存在的挑战,并同时实现 CO 固存。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验