Suppr超能文献

利用生活方式因素开发具有成本效益的心血管疾病预测模型:巴基斯坦的一项队列研究。

Development of a cost-effective CVD prediction model using lifestyle factors. A cohort study in Pakistan.

作者信息

Naheeda Parveen, Sharifullah Khan, Ullah Shah Saeed, Azeem Abbas Muhammad, Shahzad Younis, Kinza Waqar

机构信息

School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), Islamabad, Pakistan.

Department of Cardiology, Shifa International Hospital Islamabad, Pakistan.

出版信息

Afr Health Sci. 2020 Jun;20(2):849-859. doi: 10.4314/ahs.v20i2.39.

Abstract

BACKGROUND

Cardiovascular diseases (CVD) such as hypertension and ischemic heart diseases cause 35 to 40% of deaths every year in Pakistan. Several lifestyle factors such as dietary habits, lack of exercise, mental stress, body habitus (i.e., body mass index, waist), personal habits (smoking, sleep, fitness) and clinical conditions (i.e., diabetes, dyslipidemia and hypertension) have been shown to be strongly associated with the etiology of CVD. Epidemiological studies in Pakistan have shown poor adherence of people to healthy lifestyle and lack of knowledge in adopting healthy alternatives. There are well validated cardiovascular risk estimation tools (QRISK model) that cn predict the probability of future cardiac events. The existing tools are based on laboratory investigations of biochemical test but there is no widely accepted tool available that predicts the CVD risk probability based on lifestyle factors.

AIMS

Aim of the current study was to develop alternative CVD risk estimation model based on lifestyle factors and physical attributes (without using laboratory investigation) using QRISK model as the gold standard.

STUDY DESIGN

Clinical and lifestyle data of one hundred and sixty subjects were collected to formulate a regression model for predicting CVD risk probability.

METHODS

Lifestyle factors as independent variables (IV) include BMI, waist circumference, physical activities (stamina, strength, flexibility, posture), smoking, general illnesses, dietary intake, stress and physical characteristics. CVD risk probability of QRISK Intervention computed through clinical variables was used as a dependent variable (DV) in present research. Chronological age was also included in analysis in addition to selected lifestyle factors. Regression analysis, principal component analysis and bivariate correlations were applied to assess the relationship among predictor variables and cardiovascular risk score.

RESULTS

Chronological age, waist circumference, BMI and strength showed significant effect on CVD risk probability. The proposed model can be used to calculate CVD risk probability with 72.9% accuracy for the targeted population.

CONCLUSION

The model involves only those features which can be measured without any clinical test. The proposed model is rapid and less costly hence appropriate for use in developing countries like Pakistan.

摘要

背景

心血管疾病(如高血压和缺血性心脏病)每年在巴基斯坦导致35%至40%的死亡。饮食习惯、缺乏运动、精神压力、身体状况(即体重指数、腰围)、个人习惯(吸烟、睡眠、健康状况)以及临床病症(即糖尿病、血脂异常和高血压)等多种生活方式因素已被证明与心血管疾病的病因密切相关。巴基斯坦的流行病学研究表明,人们对健康生活方式的依从性较差,且缺乏采用健康替代方案的知识。有经过充分验证的心血管风险评估工具(QRISK模型),可以预测未来心脏事件的发生概率。现有的工具基于生化检测的实验室调查,但尚无广泛接受的基于生活方式因素预测心血管疾病风险概率的工具。

目的

本研究的目的是以QRISK模型为金标准,开发一种基于生活方式因素和身体特征(不使用实验室调查)的心血管疾病风险评估替代模型。

研究设计

收集了160名受试者的临床和生活方式数据,以建立预测心血管疾病风险概率的回归模型。

方法

作为自变量(IV)的生活方式因素包括体重指数、腰围、身体活动(耐力、力量、柔韧性、姿势)、吸烟、一般疾病、饮食摄入、压力和身体特征。通过临床变量计算的QRISK干预的心血管疾病风险概率在本研究中用作因变量(DV)。除了选定的生活方式因素外,分析中还纳入了实际年龄。应用回归分析、主成分分析和双变量相关性分析来评估预测变量与心血管风险评分之间的关系。

结果

实际年龄、腰围、体重指数和力量对心血管疾病风险概率有显著影响。所提出的模型可用于计算目标人群的心血管疾病风险概率,准确率为72.9%。

结论

该模型仅涉及那些无需任何临床检测即可测量的特征。所提出的模型快速且成本较低,因此适用于巴基斯坦等发展中国家。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6033/7609114/6ccba7af169a/AFHS2002-0849Fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验