Suppr超能文献

通过毒素中和单克隆抗体的表位作图揭示蓖麻毒素 B 链的脆弱位点。

Sites of vulnerability on ricin B chain revealed through epitope mapping of toxin-neutralizing monoclonal antibodies.

机构信息

Division of Infectious Disease, New York State Department of Health,Wadsworth Center, Albany, NY, United States of America.

Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY, United States of America.

出版信息

PLoS One. 2020 Nov 9;15(11):e0236538. doi: 10.1371/journal.pone.0236538. eCollection 2020.

Abstract

Ricin toxin's B subunit (RTB) is a multifunctional galactose (Gal)-/N-acetylgalactosamine (GalNac)-specific lectin that promotes uptake and intracellular trafficking of ricin's ribosome-inactivating subunit (RTA) into mammalian cells. Structurally, RTB consists of two globular domains (RTB-D1, RTB-D2), each divided into three homologous sub-domains (α, β, γ). The two carbohydrate recognition domains (CRDs) are situated on opposite sides of RTB (sub-domains 1α and 2γ) and function non-cooperatively. Previous studies have revealed two distinct classes of toxin-neutralizing, anti-RTB monoclonal antibodies (mAbs). Type I mAbs, exemplified by SylH3, inhibit (~90%) toxin attachment to cell surfaces, while type II mAbs, epitomized by 24B11, interfere with intracellular toxin transport between the plasma membrane and the trans-Golgi network (TGN). Localizing the epitopes recognized by these two classes of mAbs has proven difficult, in part because of RTB's duplicative structure. To circumvent this problem, RTB-D1 and RTB-D2 were expressed as pIII fusion proteins on the surface of filamentous phage M13 and subsequently used as "bait" in mAb capture assays. We found that SylH3 captured RTB-D1 (but not RTB-D2) in a dose-dependent manner, while 24B11 captured RTB-D2 (but not RTB-D1) in a dose-dependent manner. We confirmed these domain assignments by competition studies with an additional 8 RTB-specific mAbs along with a dozen a single chain antibodies (VHHs). Collectively, these results demonstrate that type I and type II mAbs segregate on the basis of domain specificity and suggest that RTB's two domains may contribute to distinct steps in the intoxication pathway.

摘要

蓖麻毒素 B 亚基(RTB)是一种多功能半乳糖(Gal)/N-乙酰半乳糖胺(GalNac)特异性凝集素,可促进蓖麻毒素核糖体失活亚基(RTA)进入哺乳动物细胞的摄取和细胞内转运。在结构上,RTB 由两个球状结构域(RTB-D1、RTB-D2)组成,每个结构域又分为三个同源亚结构域(α、β、γ)。两个碳水化合物识别结构域(CRD)位于 RTB 的相对侧(亚结构域 1α和 2γ),并以非协同方式发挥作用。先前的研究揭示了两种不同类别的毒素中和抗 RTB 单克隆抗体(mAb)。I 型 mAb 以 SylH3 为代表,可抑制(~90%)毒素与细胞表面的附着,而 II 型 mAb 以 24B11 为代表,干扰质膜和反式高尔基体网络(TGN)之间的细胞内毒素转运。定位这两类 mAb 识别的表位证明是困难的,部分原因是 RTB 的重复结构。为了规避这个问题,RTB-D1 和 RTB-D2 被表达为丝状噬菌体 M13 表面的 pIII 融合蛋白,随后在 mAb 捕获测定中用作“诱饵”。我们发现 SylH3 以剂量依赖的方式捕获 RTB-D1(但不捕获 RTB-D2),而 24B11 以剂量依赖的方式捕获 RTB-D2(但不捕获 RTB-D1)。我们通过与另外 8 种 RTB 特异性 mAb 以及十几个单链抗体(VHHs)进行竞争研究,证实了这些结构域的分配。总的来说,这些结果表明 I 型和 II 型 mAb 基于结构域特异性分离,并表明 RTB 的两个结构域可能有助于中毒途径中的不同步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bd4/7652295/5d91a226b0c1/pone.0236538.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验