New York Structural Biology Center, New York, NY, USA.
Department of Biomedical Sciences, University at Albany, Albany, NY, USA; Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
J Mol Biol. 2021 Jul 23;433(15):167086. doi: 10.1016/j.jmb.2021.167086. Epub 2021 Jun 3.
Ricin toxin kills mammalian cells with notorious efficiency. The toxin's B subunit (RTB) is a Gal/GalNAc-specific lectin that attaches to cell surfaces and promotes retrograde transport of ricin's A subunit (RTA) to the trans Golgi network (TGN) and endoplasmic reticulum (ER). RTA is liberated from RTB in the ER and translocated into the cell cytoplasm, where it functions as a ribosome-inactivating protein. While antibodies against ricin's individual subunits have been reported, we now describe seven alpaca-derived, single-domain antibodies (VHs) that span the RTA-RTB interface, including four Tier 1 VHs with IC values <1 nM. Crystal structures of each VH bound to native ricin holotoxin revealed three different binding modes, based on contact with RTA's F-G loop (mode 1), RTB's subdomain 2γ (mode 2) or both (mode 3). VHs in modes 2 and 3 were highly effective at blocking ricin attachment to HeLa cells and immobilized asialofetuin, due to framework residues (FR3) that occupied the 2γ Gal/GalNAc-binding pocket and mimic ligand. The four Tier 1 VHs also interfered with intracellular functions of RTB, as they neutralized ricin in a post-attachment cytotoxicity assay (e.g., the toxin was bound to cell surfaces before antibody addition) and reduced the efficiency of toxin transport to the TGN. We conclude that the RTA-RTB interface is a target of potent toxin-neutralizing antibodies that interfere with both extracellular and intracellular events in ricin's cytotoxic pathway.
蓖麻毒素能高效杀死哺乳动物细胞。该毒素的 B 亚基(RTB)是一种 Gal/GalNAc 特异性凝集素,可与细胞表面结合,并促进蓖麻毒素的 A 亚基(RTA)逆向运输到反式高尔基体网络(TGN)和内质网(ER)。RTA 在 ER 中从 RTB 中释放出来,并易位到细胞质中,在那里它作为核糖体失活蛋白发挥作用。虽然已经报道了针对蓖麻毒素各个亚基的抗体,但我们现在描述了七种源自羊驼的单域抗体(VH),它们跨越 RTA-RTB 界面,包括四个 IC 值<1 nM 的 Tier 1 VH。每个 VH 与天然蓖麻毒素全毒素结合的晶体结构揭示了三种不同的结合模式,基于与 RTA 的 F-G 环(模式 1)、RTB 的亚结构域 2γ(模式 2)或两者(模式 3)的接触。由于 FR3 占据了 2γ Gal/GalNAc 结合口袋并模拟配体,模式 2 和 3 中的 VH 非常有效地阻止了蓖麻毒素与 HeLa 细胞和固定化去唾液酸胎球蛋白的结合。由于 FR3 占据了 2γ Gal/GalNAc 结合口袋并模拟配体,模式 2 和 3 中的 VH 非常有效地阻止了蓖麻毒素与 HeLa 细胞和固定化去唾液酸胎球蛋白的结合。由于 FR3 占据了 2γ Gal/GalNAc 结合口袋并模拟配体,模式 2 和 3 中的 VH 非常有效地阻止了蓖麻毒素与 HeLa 细胞和固定化去唾液酸胎球蛋白的结合。这四个 Tier 1 VH 还干扰了 RTB 的细胞内功能,因为它们在附着后细胞毒性测定中中和了蓖麻毒素(例如,在添加抗体之前,毒素已与细胞表面结合),并降低了毒素向 TGN 的运输效率。我们得出结论,RTA-RTB 界面是一种有效的毒素中和抗体的靶标,该抗体干扰蓖麻毒素细胞毒性途径中的细胞外和细胞内事件。