Suppr超能文献

FireProtDB:人工 curated 蛋白质稳定性数据数据库。

FireProtDB: database of manually curated protein stability data.

机构信息

Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic.

International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.

出版信息

Nucleic Acids Res. 2021 Jan 8;49(D1):D319-D324. doi: 10.1093/nar/gkaa981.

Abstract

The majority of naturally occurring proteins have evolved to function under mild conditions inside the living organisms. One of the critical obstacles for the use of proteins in biotechnological applications is their insufficient stability at elevated temperatures or in the presence of salts. Since experimental screening for stabilizing mutations is typically laborious and expensive, in silico predictors are often used for narrowing down the mutational landscape. The recent advances in machine learning and artificial intelligence further facilitate the development of such computational tools. However, the accuracy of these predictors strongly depends on the quality and amount of data used for training and testing, which have often been reported as the current bottleneck of the approach. To address this problem, we present a novel database of experimental thermostability data for single-point mutants FireProtDB. The database combines the published datasets, data extracted manually from the recent literature, and the data collected in our laboratory. Its user interface is designed to facilitate both types of the expected use: (i) the interactive explorations of individual entries on the level of a protein or mutation and (ii) the construction of highly customized and machine learning-friendly datasets using advanced searching and filtering. The database is freely available at https://loschmidt.chemi.muni.cz/fireprotdb.

摘要

大多数天然存在的蛋白质都是为了在生物体内部的温和条件下发挥功能而进化的。在生物技术应用中使用蛋白质的一个关键障碍是,它们在高温或存在盐的情况下不够稳定。由于实验筛选稳定突变通常是费力且昂贵的,因此通常使用计算预测器来缩小突变景观。机器学习和人工智能的最新进展进一步促进了这些计算工具的发展。然而,这些预测器的准确性强烈依赖于用于训练和测试的数据的质量和数量,这些数据经常被报道为该方法的当前瓶颈。为了解决这个问题,我们提出了一个新的单点突变体 FireProtDB 的实验热稳定性数据数据库。该数据库结合了已发表的数据集、从最近文献中手动提取的数据以及我们实验室收集的数据。它的用户界面旨在方便两种类型的预期使用:(i)在蛋白质或突变水平上对单个条目进行交互式探索,以及(ii)使用高级搜索和筛选功能构建高度定制且适合机器学习的数据集。该数据库可在 https://loschmidt.chemi.muni.cz/fireprotdb 上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc2/7778887/6a6df6983e70/gkaa981fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验