Suppr超能文献

Cohen's d 效应量图像的置信集。

Confidence Sets for Cohen's d effect size images.

机构信息

Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK.

Division of Biostatistics, University of California, San Diego, CA, USA.

出版信息

Neuroimage. 2021 Feb 1;226:117477. doi: 10.1016/j.neuroimage.2020.117477. Epub 2020 Nov 6.

Abstract

Current statistical inference methods for task-fMRI suffer from two fundamental limitations. First, the focus is solely on detection of non-zero signal or signal change, a problem that is exacerbated for large scale studies (e.g. UK Biobank, N=40,000+) where the 'null hypothesis fallacy' causes even trivial effects to be determined as significant. Second, for any sample size, widely used cluster inference methods only indicate regions where a null hypothesis can be rejected, without providing any notion of spatial uncertainty about the activation. In this work, we address these issues by developing spatial Confidence Sets (CSs) on clusters found in thresholded Cohen's d effect size images. We produce an upper and lower CS to make confidence statements about brain regions where Cohen's d effect sizes have exceeded and fallen short of a non-zero threshold, respectively. The CSs convey information about the magnitude and reliability of effect sizes that is usually given separately in a t-statistic and effect estimate map. We expand the theory developed in our previous work on CSs for %BOLD change effect maps (Bowring et al., 2019) using recent results from the bootstrapping literature. By assessing the empirical coverage with 2D and 3D Monte Carlo simulations resembling fMRI data, we find our method is accurate in sample sizes as low as N=60. We compute Cohen's d CSs for the Human Connectome Project working memory task-fMRI data, illustrating the brain regions with a reliable Cohen's d response for a given threshold. By comparing the CSs with results obtained from a traditional statistical voxelwise inference, we highlight the improvement in activation localization that can be gained with the Confidence Sets.

摘要

当前的任务态 fMRI 统计推断方法存在两个基本局限性。首先,研究仅关注于检测非零信号或信号变化,而对于大规模研究(例如 UK Biobank,N=40,000+)来说,这个问题更加严重,因为“零假设谬误”会导致即使是微不足道的效应也被确定为显著。其次,对于任何样本量,广泛使用的聚类推断方法仅指示可以拒绝零假设的区域,而没有提供关于激活的空间不确定性的任何概念。在这项工作中,我们通过开发在阈值化 Cohen's d 效应大小图像中发现的聚类的空间置信集(CS)来解决这些问题。我们生成一个上限和下限 CS,以便对 Cohen's d 效应大小超过和未达到非零阈值的脑区做出置信度陈述。CS 传达了关于效应大小的幅度和可靠性的信息,这些信息通常在 t 统计量和效应估计图中分别给出。我们使用最近从引导文献中获得的结果扩展了我们之前关于 %BOLD 变化效应图的 CS 理论(Bowring 等人,2019)。通过使用类似于 fMRI 数据的 2D 和 3D 蒙特卡罗模拟评估经验覆盖范围,我们发现我们的方法在样本量低至 N=60 的情况下仍然准确。我们为人类连接组计划工作记忆任务 fMRI 数据计算 Cohen's d CS,说明了对于给定阈值具有可靠 Cohen's d 响应的脑区。通过将 CS 与传统统计体素推断的结果进行比较,我们强调了使用置信集可以获得的激活定位的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2770/7836238/41f9f03ef9ee/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验