Ren Junting, Telschow Fabian J E, Schwartzman Armin
Division of Biostatistics, University of California San Diego, La Jolla, CA, USA.
Institute of Mathematics, Humboldt Universität zu Berlin, Berlin, Germany.
J R Stat Soc Ser C Appl Stat. 2024 May 31;73(4):1082-1109. doi: 10.1093/jrsssc/qlae027. eCollection 2024 Aug.
Motivated by the questions of risk assessment in climatology (temperature change in North America) and medicine (impact of statin usage and coronavirus disease 2019 on hospitalized patients), we address the problem of estimating the set in the domain of a function whose image equals a predefined subset of the real line. Existing methods require strict assumptions. We generalize the estimation of such sets to dense and nondense domains with protection against inflated Type I error in exploratory data analysis. This is achieved by proving that confidence sets of multiple upper, lower, or interval sets can be simultaneously constructed with the desired confidence nonasymptotically through inverting simultaneous confidence intervals. Nonparametric bootstrap algorithm and code are provided.
受气候学(北美温度变化)和医学(他汀类药物使用及2019冠状病毒病对住院患者的影响)中风险评估问题的推动,我们研究了估计函数定义域中其像等于实数线预定义子集的集合这一问题。现有方法需要严格假设。我们将此类集合的估计推广到稠密和非稠密定义域,并在探索性数据分析中防止第一类错误膨胀。这是通过证明多个上集、下集或区间集的置信集可以通过反转同时置信区间以非渐近的方式同时构建所需置信度来实现的。提供了非参数自助算法和代码。