Wang Gang, Dong Qunxi, Wu Jianfeng, Su Yi, Chen Kewei, Su Qingtang, Zhang Xiaofeng, Hao Jinguang, Yao Tao, Liu Li, Zhang Caiming, Caselli Richard J, Reiman Eric M, Wang Yalin
Ulsan Ship and Ocean College, Ludong University, Yantai, China.
School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809 Tempe, AZ 85287, USA.
Med Image Anal. 2021 Jan;67:101877. doi: 10.1016/j.media.2020.101877. Epub 2020 Oct 21.
Cognitive decline due to Alzheimer's disease (AD) is closely associated with brain structure alterations captured by structural magnetic resonance imaging (sMRI). It supports the validity to develop sMRI-based univariate neurodegeneration biomarkers (UNB). However, existing UNB work either fails to model large group variances or does not capture AD dementia (ADD) induced changes. We propose a novel low-rank and sparse subspace decomposition method capable of stably quantifying the morphological changes induced by ADD. Specifically, we propose a numerically efficient rank minimization mechanism to extract group common structure and impose regularization constraints to encode the original 3D morphometry connectivity. Further, we generate regions-of-interest (ROI) with group difference study between common subspaces of Aβ+AD and Aβ-cognitively unimpaired (CU) groups. A univariate morphometry index (UMI) is constructed from these ROIs by summarizing individual morphological characteristics weighted by normalized difference between Aβ+AD and Aβ-CU groups. We use hippocampal surface radial distance feature to compute the UMIs and validate our work in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. With hippocampal UMIs, the estimated minimum sample sizes needed to detect a 25% reduction in the mean annual change with 80% power and two-tailed P=0.05are 116, 279 and 387 for the longitudinal Aβ+AD, Aβ+mild cognitive impairment (MCI) and Aβ+CU groups, respectively. Additionally, for MCI patients, UMIs well correlate with hazard ratio of conversion to AD (4.3, 95% CI = 2.3-8.2) within 18 months. Our experimental results outperform traditional hippocampal volume measures and suggest the application of UMI as a potential UNB.
阿尔茨海默病(AD)导致的认知衰退与结构磁共振成像(sMRI)所捕捉到的脑结构改变密切相关。这支持了开发基于sMRI的单变量神经退行性生物标志物(UNB)的有效性。然而,现有的UNB研究要么未能对大群体差异进行建模,要么没有捕捉到AD痴呆(ADD)引发的变化。我们提出了一种新颖的低秩和稀疏子空间分解方法,能够稳定地量化ADD引发的形态学变化。具体而言,我们提出了一种数值高效的秩最小化机制,以提取群体共同结构,并施加正则化约束来编码原始的三维形态测量连通性。此外,我们通过对Aβ+AD组和Aβ-认知未受损(CU)组的共同子空间进行群体差异研究来生成感兴趣区域(ROI)。通过汇总由Aβ+AD组和Aβ-CU组之间的归一化差异加权的个体形态特征,从这些ROI构建单变量形态测量指数(UMI)。我们使用海马表面径向距离特征来计算UMI,并在阿尔茨海默病神经成像倡议(ADNI)队列中验证我们的工作。对于海马UMI,在80%的检验效能和双侧P=0.05的情况下,检测到平均年变化减少25%所需的估计最小样本量,纵向Aβ+AD组、Aβ+轻度认知障碍(MCI)组和Aβ+CU组分别为116、279和387。此外,对于MCI患者,UMI与18个月内转化为AD的风险比(4.3,95%置信区间=2.3-8.2)具有良好的相关性。我们的实验结果优于传统的海马体积测量方法,并表明UMI作为一种潜在的UNB的应用前景。