Suppr超能文献

整合转录组学、基因组学和影像学用于阿尔茨海默病:一种联邦模型。

Integrating Transcriptomics, Genomics, and Imaging in Alzheimer's Disease: A Federated Model.

作者信息

Wu Jianfeng, Chen Yanxi, Wang Panwen, Caselli Richard J, Thompson Paul M, Wang Junwen, Wang Yalin

机构信息

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States.

Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States.

出版信息

Front Radiol. 2022 Jan 21;1:777030. doi: 10.3389/fradi.2021.777030. eCollection 2021.

Abstract

Alzheimer's disease (AD) affects more than 1 in 9 people age 65 and older and becomes an urgent public health concern as the global population ages. In clinical practice, structural magnetic resonance imaging (sMRI) is the most accessible and widely used diagnostic imaging modality. Additionally, genome-wide association studies (GWAS) and transcriptomics-the study of gene expression-also play an important role in understanding AD etiology and progression. Sophisticated imaging genetics systems have been developed to discover genetic factors that consistently affect brain function and structure. However, most studies to date focused on the relationships between brain sMRI and GWAS or brain sMRI and transcriptomics. To our knowledge, few methods have been developed to discover and infer multimodal relationships among sMRI, GWAS, and transcriptomics. To address this, we propose a novel federated model, Genotype-Expression-Imaging Data Integration (GEIDI), to identify genetic and transcriptomic influences on brain sMRI measures. The relationships between brain imaging measures and gene expression are allowed to depend on a person's genotype at the single-nucleotide polymorphism (SNP) level, making the inferences adaptive and personalized. We performed extensive experiments on publicly available Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results demonstrated our proposed method outperformed state-of-the-art expression quantitative trait loci (eQTL) methods for detecting genetic and transcriptomic factors related to AD and has stable performance when data are integrated from multiple sites. Our GEIDI approach may offer novel insights into the relationship among image biomarkers, genotypes, and gene expression and help discover novel genetic targets for potential AD drug treatments.

摘要

阿尔茨海默病(AD)影响着每9名65岁及以上老人中的超过1人,随着全球人口老龄化,它已成为一个紧迫的公共卫生问题。在临床实践中,结构磁共振成像(sMRI)是最容易获得且使用最广泛的诊断成像方式。此外,全基因组关联研究(GWAS)以及转录组学——对基因表达的研究——在理解AD的病因和进展方面也发挥着重要作用。复杂的影像遗传学系统已被开发出来,以发现持续影响脑功能和结构的遗传因素。然而,迄今为止,大多数研究都集中在脑sMRI与GWAS之间或脑sMRI与转录组学之间的关系上。据我们所知,很少有方法被开发出来用于发现和推断sMRI、GWAS和转录组学之间的多模态关系。为了解决这个问题,我们提出了一种新颖的联邦模型,即基因型-表达-影像数据整合(GEIDI),以识别遗传和转录组对脑sMRI测量的影响。脑成像测量与基因表达之间的关系被允许依赖于单核苷酸多态性(SNP)水平上一个人的基因型,从而使推断具有适应性和个性化。我们在公开可用的阿尔茨海默病神经影像倡议(ADNI)数据集上进行了广泛的实验。实验结果表明,我们提出的方法在检测与AD相关的遗传和转录组因素方面优于现有的表达数量性状位点(eQTL)方法,并且在从多个位点整合数据时具有稳定的性能。我们的GEIDI方法可能为影像生物标志物、基因型和基因表达之间的关系提供新的见解,并有助于发现潜在AD药物治疗的新遗传靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c478/10365097/7c008c8816d0/fradi-01-777030-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验