IEEE Trans Med Imaging. 2021 Aug;40(8):2030-2041. doi: 10.1109/TMI.2021.3070780. Epub 2021 Jul 30.
An effective presymptomatic diagnosis and treatment of Alzheimer's disease (AD) would have enormous public health benefits. Sparse coding (SC) has shown strong potential for longitudinal brain image analysis in preclinical AD research. However, the traditional SC computation is time-consuming and does not explore the feature correlations that are consistent over the time. In addition, longitudinal brain image cohorts usually contain incomplete image data and clinical labels. To address these challenges, we propose a novel two-stage Multi-Resemblance Multi-Target Low-Rank Coding (MMLC) method, which encourages that sparse codes of neighboring longitudinal time points are resemblant to each other, favors sparse code low-rankness to reduce the computational cost and is resilient to both source and target data incompleteness. In stage one, we propose an online multi-resemblant low-rank SC method to utilize the common and task-specific dictionaries in different time points to immune to incomplete source data and capture the longitudinal correlation. In stage two, supported by a rigorous theoretical analysis, we develop a multi-target learning method to address the missing clinical label issue. To solve such a multi-task low-rank sparse optimization problem, we propose multi-task stochastic coordinate coding with a sequence of closed-form update steps which reduces the computational costs guaranteed by a theoretical convergence proof. We apply MMLC on a publicly available neuroimaging cohort to predict two clinical measures and compare it with six other methods. Our experimental results show our proposed method achieves superior results on both computational efficiency and predictive accuracy and has great potential to assist the AD prevention.
有效的阿尔茨海默病(AD)的症状前诊断和治疗将具有巨大的公共卫生效益。稀疏编码(SC)在 AD 研究的临床前研究中具有很强的纵向脑影像分析潜力。然而,传统的 SC 计算耗时,并且没有探索在时间上一致的特征相关性。此外,纵向脑影像队列通常包含不完整的图像数据和临床标签。为了解决这些挑战,我们提出了一种新颖的两阶段多相似多目标低秩编码(MMLC)方法,该方法鼓励相邻纵向时间点的稀疏码彼此相似,有利于稀疏码的低秩性以降低计算成本,并且对源数据和目标数据的不完整性具有弹性。在第一阶段,我们提出了一种在线多相似低秩 SC 方法,以利用不同时间点的通用和特定任务字典来免疫源数据的不完整,并捕捉纵向相关性。在第二阶段,在严格的理论分析的支持下,我们开发了一种多目标学习方法来解决缺失的临床标签问题。为了解决这种多任务低秩稀疏优化问题,我们提出了多任务随机坐标编码,并使用一系列闭式更新步骤来减少计算成本,保证理论收敛证明。我们将 MMLC 应用于公开的神经影像队列,以预测两个临床指标,并将其与其他六种方法进行比较。我们的实验结果表明,我们提出的方法在计算效率和预测准确性方面都取得了优异的结果,并且具有很大的潜力来辅助 AD 的预防。