Suppr超能文献

从 Hi-C 数据推断染色体的径向组织。

Inferring chromosome radial organization from Hi-C data.

机构信息

UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA.

Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.

出版信息

BMC Bioinformatics. 2020 Nov 10;21(1):511. doi: 10.1186/s12859-020-03841-7.

Abstract

BACKGROUND

The nonrandom radial organization of eukaryotic chromosome territories (CTs) inside the nucleus plays an important role in nuclear functional compartmentalization. Increasingly, chromosome conformation capture (Hi-C) based approaches are being used to characterize the genome structure of many cell types and conditions. Computational methods to extract 3D arrangements of CTs from this type of pairwise contact data will thus increase our ability to analyze CT organization in a wider variety of biological situations.

RESULTS

A number of full-scale polymer models have successfully reconstructed the 3D structure of chromosome territories from Hi-C. To supplement such methods, we explore alternative, direct, and less computationally intensive approaches to capture radial CT organization from Hi-C data. We show that we can infer relative chromosome ordering using PCA on a thresholded inter-chromosomal contact matrix. We simulate an ensemble of possible CT arrangements using a force-directed network layout algorithm and propose an approach to integrate additional chromosome properties into our predictions. Our CT radial organization predictions have a high correlation with microscopy imaging data for various cell nucleus geometries (lymphoblastoid, skin fibroblast, and breast epithelial cells), and we can capture previously documented changes in senescent and progeria cells.

CONCLUSIONS

Our analysis approaches provide rapid and modular approaches to screen for alterations in CT organization across widely available Hi-C data. We demonstrate which stages of the approach can extract meaningful information, and also describe limitations of pairwise contacts alone to predict absolute 3D positions.

摘要

背景

真核生物染色体区室(CT)在核内的非随机径向组织在核功能区隔化中起着重要作用。越来越多的基于染色体构象捕获(Hi-C)的方法被用于描述许多细胞类型和条件下的基因组结构。从这种类型的成对接触数据中提取 CT 三维排列的计算方法将提高我们在更广泛的生物学情况下分析 CT 组织的能力。

结果

许多全规模聚合物模型已经成功地从 Hi-C 中重建了染色体区室的三维结构。为了补充这些方法,我们探索了替代的、直接的和计算强度较低的方法,从 Hi-C 数据中捕获径向 CT 组织。我们表明,我们可以使用阈值化的染色体间接触矩阵上的 PCA 推断相对染色体排序。我们使用力导向网络布局算法模拟了一组可能的 CT 排列,并提出了一种将额外的染色体性质纳入我们预测的方法。我们的 CT 径向组织预测与各种细胞核几何形状(淋巴母细胞、皮肤成纤维细胞和乳腺上皮细胞)的显微镜成像数据具有高度相关性,并且我们可以捕捉到衰老和早老细胞中以前记录的变化。

结论

我们的分析方法提供了快速和模块化的方法,用于筛选广泛可用的 Hi-C 数据中 CT 组织的改变。我们展示了该方法的哪些阶段可以提取有意义的信息,还描述了仅使用成对接触来预测绝对 3D 位置的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43cc/7654587/fd3960ef83c7/12859_2020_3841_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验