Suppr超能文献

SVFX:一种用于量化结构变异致病性的机器学习框架。

SVFX: a machine learning framework to quantify the pathogenicity of structural variants.

机构信息

Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA.

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.

出版信息

Genome Biol. 2020 Nov 9;21(1):274. doi: 10.1186/s13059-020-02178-x.

Abstract

There is a lack of approaches for identifying pathogenic genomic structural variants (SVs) although they play a crucial role in many diseases. We present a mechanism-agnostic machine learning-based workflow, called SVFX, to assign pathogenicity scores to somatic and germline SVs. In particular, we generate somatic and germline training models, which include genomic, epigenomic, and conservation-based features, for SV call sets in diseased and healthy individuals. We then apply SVFX to SVs in cancer and other diseases; SVFX achieves high accuracy in identifying pathogenic SVs. Predicted pathogenic SVs in cancer cohorts are enriched among known cancer genes and many cancer-related pathways.

摘要

尽管致病性基因组结构变异(SV)在许多疾病中起着至关重要的作用,但目前缺乏识别它们的方法。我们提出了一种基于机器学习的、与机制无关的工作流程,称为 SVFX,用于为体细胞和种系 SV 分配致病性分数。具体来说,我们为患病和健康个体的 SV 调用集生成体细胞和种系训练模型,其中包括基于基因组、表观基因组和保守性的特征。然后,我们将 SVFX 应用于癌症和其他疾病中的 SV;SVFX 在识别致病性 SV 方面具有很高的准确性。在癌症队列中预测的致病性 SV 富集在已知的癌症基因和许多与癌症相关的途径中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验