Suppr超能文献

耳聋突变 D572N 破坏 TMC1 与 LHFPL5 的结合,从而使 TMC1 表达不稳定。

Deafness mutation D572N of TMC1 destabilizes TMC1 expression by disrupting LHFPL5 binding.

机构信息

Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.

Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China.

出版信息

Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29894-29903. doi: 10.1073/pnas.2011147117. Epub 2020 Nov 9.

Abstract

Transmembrane channel-like protein 1 (TMC1) and lipoma HMGIC fusion partner-like 5 (LHFPL5) are recognized as two critical components of the mechanotransduction complex in inner-ear hair cells. However, the physical and functional interactions of TMC1 and LHFPL5 remain largely unexplored. We examined the interaction between TMC1 and LHFPL5 by using multiple approaches, including our recently developed ultrasensitive microbead-based single-molecule pulldown (SiMPull) assay. We demonstrate that LHFPL5 physically interacts with and stabilizes TMC1 in both heterologous expression systems and in the soma and hair bundle of hair cells. Moreover, the semidominant deafness mutation D572N in human TMC1 (D569N in mouse TMC1) severely disrupted LHFPL5 binding and destabilized TMC1 expression. Thus, our findings reveal previously unrecognized physical and functional interactions of TMC1 and LHFPL5 and provide insights into the molecular mechanism by which the D572N mutation causes deafness. Notably, these findings identify a missing link in the currently known physical organization of the mechanotransduction macromolecular complex. Furthermore, this study has demonstrated the power of the microbead-based SiMPull assay for biochemical investigation of rare cells such as hair cells.

摘要

跨膜通道样蛋白 1(TMC1)和脂肪瘤 HMGIC 融合伴侣样 5(LHFPL5)被认为是内耳毛细胞机械转导复合物的两个关键组成部分。然而,TMC1 和 LHFPL5 的物理和功能相互作用在很大程度上仍未得到探索。我们使用多种方法研究了 TMC1 和 LHFPL5 之间的相互作用,包括我们最近开发的超灵敏基于微珠的单分子下拉(SiMPull)测定法。我们证明,LHFPL5 在异源表达系统以及毛细胞的体部和毛束中与 TMC1 物理相互作用并稳定 TMC1。此外,人类 TMC1 中的半显性耳聋突变 D572N(小鼠 TMC1 中的 D569N)严重破坏了 LHFPL5 的结合并使 TMC1 的表达不稳定。因此,我们的发现揭示了 TMC1 和 LHFPL5 以前未被识别的物理和功能相互作用,并深入了解了 D572N 突变导致耳聋的分子机制。值得注意的是,这些发现确定了机械转导大分子复合物目前已知的物理组织中的一个缺失环节。此外,这项研究还证明了基于微珠的 SiMPull 测定法在生化研究稀有细胞(如毛细胞)方面的强大功能。

相似文献

3
New Tmc1 Deafness Mutations Impact Mechanotransduction in Auditory Hair Cells.新的 Tmc1 耳聋突变影响听觉毛细胞的力传导。
J Neurosci. 2021 May 19;41(20):4378-4391. doi: 10.1523/JNEUROSCI.2537-20.2021. Epub 2021 Apr 6.
6
Is TMC1 the Hair Cell Mechanotransducer Channel?TMC1是毛细胞机械转导通道吗?
Biophys J. 2016 Jul 12;111(1):3-9. doi: 10.1016/j.bpj.2016.05.032.
7
Subunit determination of the conductance of hair-cell mechanotransducer channels.毛细胞机械转导通道电导的亚基测定
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1589-94. doi: 10.1073/pnas.1420906112. Epub 2014 Dec 30.

引用本文的文献

9
Nanobead-based single-molecule pulldown for single cells.用于单细胞的基于纳米珠的单分子下拉技术。
Heliyon. 2023 Nov 14;9(11):e22306. doi: 10.1016/j.heliyon.2023.e22306. eCollection 2023 Nov.
10
Mechanoelectrical transduction-related genetic forms of hearing loss.机械电转导相关的遗传性听力损失形式。
Curr Opin Physiol. 2023 Apr;32. doi: 10.1016/j.cophys.2023.100632. Epub 2023 Jan 25.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验