Suppr超能文献

温度不均导致石墨阳极上的欠电位锂沉积。

Underpotential lithium plating on graphite anodes caused by temperature heterogeneity.

作者信息

Wang Hansen, Zhu Yangying, Kim Sang Cheol, Pei Allen, Li Yanbin, Boyle David T, Wang Hongxia, Zhang Zewen, Ye Yusheng, Huang William, Liu Yayuan, Xu Jinwei, Li Jun, Liu Fang, Cui Yi

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.

Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305;

出版信息

Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29453-29461. doi: 10.1073/pnas.2009221117. Epub 2020 Nov 9.

Abstract

Rechargeability and operational safety of commercial lithium (Li)-ion batteries demand further improvement. Plating of metallic Li on graphite anodes is a critical reason for Li-ion battery capacity decay and short circuit. It is generally believed that Li plating is caused by the slow kinetics of graphite intercalation, but in this paper, we demonstrate that thermodynamics also serves a crucial role. We show that a nonuniform temperature distribution within the battery can make local plating of Li above 0 V vs. Li/Li (room temperature) thermodynamically favorable. This phenomenon is caused by temperature-dependent shifts of the equilibrium potential of Li/Li Supported by simulation results, we confirm the likelihood of this failure mechanism during commercial Li-ion battery operation, including both slow and fast charging conditions. This work furthers the understanding of nonuniform Li plating and will inspire future studies to prolong the cycling lifetime of Li-ion batteries.

摘要

商用锂离子电池的可充电性和操作安全性需要进一步改进。金属锂在石墨阳极上的电镀是锂离子电池容量衰减和短路的关键原因。一般认为锂电镀是由石墨插层动力学缓慢引起的,但在本文中,我们证明热力学也起着关键作用。我们表明,电池内温度分布不均匀会使相对于Li/Li(室温)在0V以上的锂局部电镀在热力学上变得有利。这种现象是由Li/Li平衡电位随温度的变化引起的。在模拟结果的支持下,我们证实了这种失效机制在商用锂离子电池运行期间(包括慢速和快速充电条件下)出现的可能性。这项工作加深了对不均匀锂电镀的理解,并将激发未来延长锂离子电池循环寿命的研究。

相似文献

1
Underpotential lithium plating on graphite anodes caused by temperature heterogeneity.温度不均导致石墨阳极上的欠电位锂沉积。
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29453-29461. doi: 10.1073/pnas.2009221117. Epub 2020 Nov 9.
6
Mechanistic Analysis of Microstructural Attributes to Lithium Plating in Fast Charging.快速充电中锂金属沉积的微观结构属性的机理分析
ACS Appl Mater Interfaces. 2020 Dec 16;12(50):55795-55808. doi: 10.1021/acsami.0c15144. Epub 2020 Dec 4.
8

引用本文的文献

4
A review of improvements on electric vehicle battery.电动汽车电池的改进综述。
Heliyon. 2024 Jul 25;10(15):e34806. doi: 10.1016/j.heliyon.2024.e34806. eCollection 2024 Aug 15.

本文引用的文献

4
Fast galvanic lithium corrosion involving a Kirkendall-type mechanism.快速电偶腐蚀涉及 Kirkendall 型机制。
Nat Chem. 2019 Apr;11(4):382-389. doi: 10.1038/s41557-018-0203-8. Epub 2019 Jan 21.
6
Modulation of Lithium Plating in Li-Ion Batteries with External Thermal Gradient.利用外部温度梯度调制锂离子电池的锂电镀。
ACS Appl Mater Interfaces. 2018 Aug 8;10(31):26328-26334. doi: 10.1021/acsami.8b09131. Epub 2018 Jul 24.
7
Fast charging of lithium-ion batteries at all temperatures.在所有温度下快速充电锂离子电池。
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7266-7271. doi: 10.1073/pnas.1807115115. Epub 2018 Jun 25.
8
30 Years of Lithium-Ion Batteries.锂离子电池的三十年。
Adv Mater. 2018 Jun 14:e1800561. doi: 10.1002/adma.201800561.
9
An Outlook on Lithium Ion Battery Technology.锂离子电池技术展望
ACS Cent Sci. 2017 Oct 25;3(10):1063-1069. doi: 10.1021/acscentsci.7b00288. Epub 2017 Sep 7.
10
Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal.电沉积锂金属的纳观形核与生长。
Nano Lett. 2017 Feb 8;17(2):1132-1139. doi: 10.1021/acs.nanolett.6b04755. Epub 2017 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验