Wang Xi-Guang, Guo Guang-Hua, Berakdar Jamal
School of Physics and Electronics, Central South University, 410083, Changsha, China.
Institut für Physik, Martin-Luther Universität Halle-Wittenberg, 06120, Halle/Saale, Germany.
Nat Commun. 2020 Nov 9;11(1):5663. doi: 10.1038/s41467-020-19431-3.
Tuning the magneto optical response and magnetic dynamics are key elements in designing magnetic metamaterials and devices. This theoretical study uncovers a highly effective way of controlling the magnetic permeability via shaping the magnonic properties of coupled magnetic waveguides separated by a nonmagnetic spacer with strong spin-orbit interaction (SOI). We demonstrate how a spacer charge current leads to enhancement of magnetic damping in one waveguide and a decrease in the other, constituting a bias-controlled magnetic parity-time (PT) symmetric system at the verge of the exceptional point where magnetic gains/losses are balanced. We find phenomena inherent to PT-symmetric systems and SOI-driven interfacial structures, including field-controlled magnon power oscillations, nonreciprocal propagation, magnon trapping and enhancement as well as an increased sensitivity to perturbations and abrupt spin reversal. The results point to a new route for designing magnonic waveguides and microstructures with enhanced magnetic response.
调整磁光响应和磁动力学是设计磁性超材料和器件的关键要素。这项理论研究揭示了一种通过塑造由具有强自旋轨道相互作用(SOI)的非磁性间隔层隔开的耦合磁波导的磁振子特性来控制磁导率的高效方法。我们展示了间隔层充电电流如何导致一个波导中的磁阻尼增强而另一个波导中的磁阻尼减小,从而在磁增益/损耗平衡的奇异点边缘构成一个由偏置控制的磁宇称时间(PT)对称系统。我们发现了PT对称系统和SOI驱动的界面结构所固有的现象,包括场控磁振子功率振荡、非互易传播、磁振子捕获和增强以及对扰动和突然自旋反转的敏感性增加。这些结果为设计具有增强磁响应的磁振子波导和微结构指明了一条新途径。