Schlitz Richard, Vélez Saül, Kamra Akashdeep, Lambert Charles-Henri, Lammel Michaela, Goennenwein Sebastian T B, Gambardella Pietro
Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
Institut für Festkörper- und Materialphysik, Technische Universität Dresden and Würzburg-Dresden Cluster of Excellence ct.qmat, 01062 Dresden, Germany.
Phys Rev Lett. 2021 Jun 25;126(25):257201. doi: 10.1103/PhysRevLett.126.257201.
Spin transport via magnon diffusion in magnetic insulators is important for a broad range of spin-based phenomena and devices. However, the absence of the magnon equivalent of an electric force is a bottleneck. In this Letter, we demonstrate the controlled generation of magnon drift currents in heterostructures of yttrium iron garnet and platinum. By performing electrical injection and detection of incoherent magnons, we find magnon drift currents that stem from the interfacial Dzyaloshinskii-Moriya interaction. We can further control the magnon drift by the orientation of the magnetic field. The drift current changes the magnon propagation length by up to ±6% relative to diffusion. We generalize the magnonic spin transport theory to include a finite drift velocity resulting from any inversion asymmetric interaction and obtain results consistent with our experiments.
通过磁绝缘体中的磁振子扩散实现的自旋输运对于广泛的基于自旋的现象和器件而言至关重要。然而,缺乏与电力等效的磁振子是一个瓶颈。在本信函中,我们展示了在钇铁石榴石与铂的异质结构中可控地产生磁振子漂移电流。通过进行非相干磁振子的电注入和检测,我们发现了源自界面Dzyaloshinskii-Moriya相互作用的磁振子漂移电流。我们可以通过磁场的取向进一步控制磁振子漂移。相对于扩散,漂移电流使磁振子传播长度改变高达±6%。我们将磁振子自旋输运理论推广至包含由任何反演不对称相互作用产生的有限漂移速度,并获得了与我们实验一致的结果。