Institut Européen des Membranes, Adaptive Supramolecular, Nanosystems Group, University of Montpellier, ENSCM, CNRS, Montpellier, France.
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy.
Nat Nanotechnol. 2021 Feb;16(2):190-196. doi: 10.1038/s41565-020-00796-x. Epub 2020 Nov 9.
Inspired by biological proteins, artificial water channels (AWCs) can be used to overcome the performances of traditional desalination membranes. Their rational incorporation in composite polyamide provides an example of biomimetic membranes applied under representative reverse osmosis desalination conditions with an intrinsically high water-to-salt permeability ratio. The hybrid polyamide presents larger voids and seamlessly incorporates I-quartet AWCs for highly selective transport of water. These biomimetic membranes can be easily scaled for industrial standards (>m), provide 99.5% rejection of NaCl or 91.4% rejection of boron, with a water flux of 75 l m h at 65 bar and 35,000 ppm NaCl feed solution, representative of seawater desalination. This flux is more than 75% higher than that observed with current state-of-the-art membranes with equivalent solute rejection, translating into an equivalent reduction of the membrane area for the same water output and a roughly 12% reduction of the required energy for desalination.
受生物蛋白质的启发,人工水通道(AWC)可用于克服传统脱盐膜的性能限制。将其合理地整合到复合聚酰胺中,为仿生膜在具有内在高水盐渗透性比的代表性反渗透脱盐条件下的应用提供了一个范例。该混合聚酰胺具有更大的空隙,并无缝整合 I-四联体 AWC,可实现水的高选择性传输。这些仿生膜可以轻松扩展到工业标准(>m),对 NaCl 的截留率为 99.5%,对硼的截留率为 91.4%,在 65 巴和 35,000 ppm NaCl 进料溶液下的水通量为 75 l m h,代表海水脱盐。与具有同等溶质截留率的当前最先进的膜相比,该通量高出 75%以上,这意味着对于相同的产水量,所需的膜面积减少了等效值,而脱盐所需的能量也减少了约 12%。