Suppr超能文献

基于卷积神经网络的弥漫性肺疾病 CT 图像检索:三种主要特发性间质性肺炎中的性能评估。

Content-Based Image Retrieval of Chest CT with Convolutional Neural Network for Diffuse Interstitial Lung Disease: Performance Assessment in Three Major Idiopathic Interstitial Pneumonias.

机构信息

Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

出版信息

Korean J Radiol. 2021 Feb;22(2):281-290. doi: 10.3348/kjr.2020.0603. Epub 2020 Oct 21.

Abstract

OBJECTIVE

To assess the performance of content-based image retrieval (CBIR) of chest CT for diffuse interstitial lung disease (DILD).

MATERIALS AND METHODS

The database was comprised by 246 pairs of chest CTs (initial and follow-up CTs within two years) from 246 patients with usual interstitial pneumonia (UIP, n = 100), nonspecific interstitial pneumonia (NSIP, n = 101), and cryptogenic organic pneumonia (COP, n = 45). Sixty cases (30-UIP, 20-NSIP, and 10-COP) were selected as the queries. The CBIR retrieved five similar CTs as a query from the database by comparing six image patterns (honeycombing, reticular opacity, emphysema, ground-glass opacity, consolidation and normal lung) of DILD, which were automatically quantified and classified by a convolutional neural network. We assessed the rates of retrieving the same pairs of query CTs, and the number of CTs with the same disease class as query CTs in top 1-5 retrievals. Chest radiologists evaluated the similarity between retrieved CTs and queries using a 5-scale grading system (5-almost identical; 4-same disease; 3-likelihood of same disease is half; 2-likely different; and 1-different disease).

RESULTS

The rate of retrieving the same pairs of query CTs in top 1 retrieval was 61.7% (37/60) and in top 1-5 retrievals was 81.7% (49/60). The CBIR retrieved the same pairs of query CTs more in UIP compared to NSIP and COP ( = 0.008 and 0.002). On average, it retrieved 4.17 of five similar CTs from the same disease class. Radiologists rated 71.3% to 73.0% of the retrieved CTs with a similarity score of 4 or 5.

CONCLUSION

The proposed CBIR system showed good performance for retrieving chest CTs showing similar patterns for DILD.

摘要

目的

评估基于内容的胸部 CT 图像检索(CBIR)在弥漫性间质性肺病(DILD)中的性能。

材料与方法

数据库由 246 例患者的 246 对胸部 CT(初始 CT 和两年内的随访 CT)组成,这些患者患有特发性间质性肺炎(UIP,n=100)、非特异性间质性肺炎(NSIP,n=101)和隐源性机化性肺炎(COP,n=45)。选择 60 例(30 例 UIP、20 例 NSIP 和 10 例 COP)作为查询。通过比较 DILD 的六种图像模式(蜂窝状、网状混浊、气肿、磨玻璃影、实变和正常肺),CBIR 从数据库中检索到五张与查询 CT 相似的 CT,这些图像模式由卷积神经网络自动量化和分类。我们评估了检索到相同查询 CT 的比例,以及在检索到的前 1-5 张 CT 中与查询 CT 具有相同疾病类别的 CT 数量。胸部放射科医生使用 5 级评分系统(5-几乎相同;4-相同疾病;3-相同疾病的可能性为一半;2-可能不同;1-不同疾病)评估检索到的 CT 与查询之间的相似性。

结果

在 top1 检索中检索到相同查询 CT 对的比例为 61.7%(37/60),在 top1-5 检索中为 81.7%(49/60)。与 NSIP 和 COP 相比,CBIR 更能检索到 UIP 中相同的查询 CT 对(=0.008 和 0.002)。平均而言,它从同一疾病类别中检索到 5 个相似 CT 中的 4.17 个。放射科医生对检索到的 CT 进行评分,有 71.3%到 73.0%的相似度评分为 4 或 5。

结论

所提出的 CBIR 系统在检索具有相似 DILD 模式的胸部 CT 方面表现出良好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aec0/7817627/163a2e6fe8c0/kjr-22-281-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验