Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
Korean J Radiol. 2021 Feb;22(2):281-290. doi: 10.3348/kjr.2020.0603. Epub 2020 Oct 21.
To assess the performance of content-based image retrieval (CBIR) of chest CT for diffuse interstitial lung disease (DILD).
The database was comprised by 246 pairs of chest CTs (initial and follow-up CTs within two years) from 246 patients with usual interstitial pneumonia (UIP, n = 100), nonspecific interstitial pneumonia (NSIP, n = 101), and cryptogenic organic pneumonia (COP, n = 45). Sixty cases (30-UIP, 20-NSIP, and 10-COP) were selected as the queries. The CBIR retrieved five similar CTs as a query from the database by comparing six image patterns (honeycombing, reticular opacity, emphysema, ground-glass opacity, consolidation and normal lung) of DILD, which were automatically quantified and classified by a convolutional neural network. We assessed the rates of retrieving the same pairs of query CTs, and the number of CTs with the same disease class as query CTs in top 1-5 retrievals. Chest radiologists evaluated the similarity between retrieved CTs and queries using a 5-scale grading system (5-almost identical; 4-same disease; 3-likelihood of same disease is half; 2-likely different; and 1-different disease).
The rate of retrieving the same pairs of query CTs in top 1 retrieval was 61.7% (37/60) and in top 1-5 retrievals was 81.7% (49/60). The CBIR retrieved the same pairs of query CTs more in UIP compared to NSIP and COP ( = 0.008 and 0.002). On average, it retrieved 4.17 of five similar CTs from the same disease class. Radiologists rated 71.3% to 73.0% of the retrieved CTs with a similarity score of 4 or 5.
The proposed CBIR system showed good performance for retrieving chest CTs showing similar patterns for DILD.
评估基于内容的胸部 CT 图像检索(CBIR)在弥漫性间质性肺病(DILD)中的性能。
数据库由 246 例患者的 246 对胸部 CT(初始 CT 和两年内的随访 CT)组成,这些患者患有特发性间质性肺炎(UIP,n=100)、非特异性间质性肺炎(NSIP,n=101)和隐源性机化性肺炎(COP,n=45)。选择 60 例(30 例 UIP、20 例 NSIP 和 10 例 COP)作为查询。通过比较 DILD 的六种图像模式(蜂窝状、网状混浊、气肿、磨玻璃影、实变和正常肺),CBIR 从数据库中检索到五张与查询 CT 相似的 CT,这些图像模式由卷积神经网络自动量化和分类。我们评估了检索到相同查询 CT 的比例,以及在检索到的前 1-5 张 CT 中与查询 CT 具有相同疾病类别的 CT 数量。胸部放射科医生使用 5 级评分系统(5-几乎相同;4-相同疾病;3-相同疾病的可能性为一半;2-可能不同;1-不同疾病)评估检索到的 CT 与查询之间的相似性。
在 top1 检索中检索到相同查询 CT 对的比例为 61.7%(37/60),在 top1-5 检索中为 81.7%(49/60)。与 NSIP 和 COP 相比,CBIR 更能检索到 UIP 中相同的查询 CT 对(=0.008 和 0.002)。平均而言,它从同一疾病类别中检索到 5 个相似 CT 中的 4.17 个。放射科医生对检索到的 CT 进行评分,有 71.3%到 73.0%的相似度评分为 4 或 5。
所提出的 CBIR 系统在检索具有相似 DILD 模式的胸部 CT 方面表现出良好的性能。