Suppr超能文献

浅层和深度学习方法在分类弥漫性肺部疾病区域模式上的比较。

Comparison of Shallow and Deep Learning Methods on Classifying the Regional Pattern of Diffuse Lung Disease.

机构信息

Biomedical Engineering Research Center, Asan Institute of Life Science, Asan Medical Center, 388-1 Pungnap2-dong, Songpa-gu, Seoul, Republic of Korea.

VUNO, 6F, 507, Gangnamdae-ro, Seocho-gu, Seoul, Republic of Korea.

出版信息

J Digit Imaging. 2018 Aug;31(4):415-424. doi: 10.1007/s10278-017-0028-9.

Abstract

This study aimed to compare shallow and deep learning of classifying the patterns of interstitial lung diseases (ILDs). Using high-resolution computed tomography images, two experienced radiologists marked 1200 regions of interest (ROIs), in which 600 ROIs were each acquired using a GE or Siemens scanner and each group of 600 ROIs consisted of 100 ROIs for subregions that included normal and five regional pulmonary disease patterns (ground-glass opacity, consolidation, reticular opacity, emphysema, and honeycombing). We employed the convolution neural network (CNN) with six learnable layers that consisted of four convolution layers and two fully connected layers. The classification results were compared with the results classified by a shallow learning of a support vector machine (SVM). The CNN classifier showed significantly better performance for accuracy compared with that of the SVM classifier by 6-9%. As the convolution layer increases, the classification accuracy of the CNN showed better performance from 81.27 to 95.12%. Especially in the cases showing pathological ambiguity such as between normal and emphysema cases or between honeycombing and reticular opacity cases, the increment of the convolution layer greatly drops the misclassification rate between each case. Conclusively, the CNN classifier showed significantly greater accuracy than the SVM classifier, and the results implied structural characteristics that are inherent to the specific ILD patterns.

摘要

本研究旨在比较浅层学习和深度学习在分类间质性肺疾病(ILDs)模式方面的表现。使用高分辨率计算机断层扫描图像,两位经验丰富的放射科医生标记了 1200 个感兴趣区域(ROI),其中 600 个 ROI 分别使用 GE 或西门子扫描仪获取,每组 600 个 ROI 由包括正常和五种区域性肺部疾病模式(磨玻璃影、实变、网状影、肺气肿和蜂窝肺)的 100 个 ROI 组成。我们采用了具有六个可学习层的卷积神经网络(CNN),其中包括四个卷积层和两个全连接层。将分类结果与支持向量机(SVM)的浅层学习分类结果进行比较。CNN 分类器的准确性明显优于 SVM 分类器,提高了 6-9%。随着卷积层的增加,CNN 的分类准确性从 81.27%提高到 95.12%,表现出更好的性能。特别是在正常和肺气肿病例之间或蜂窝肺和网状影病例之间存在病理模糊的情况下,卷积层的增加大大降低了每个病例之间的错误分类率。总之,CNN 分类器的准确性明显高于 SVM 分类器,结果暗示了ILD 特定模式所固有的结构特征。

相似文献

1
Comparison of Shallow and Deep Learning Methods on Classifying the Regional Pattern of Diffuse Lung Disease.
J Digit Imaging. 2018 Aug;31(4):415-424. doi: 10.1007/s10278-017-0028-9.
7
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network.
IEEE Trans Med Imaging. 2016 May;35(5):1207-1216. doi: 10.1109/TMI.2016.2535865. Epub 2016 Feb 29.
8
Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study.
Lancet Respir Med. 2018 Nov;6(11):837-845. doi: 10.1016/S2213-2600(18)30286-8. Epub 2018 Sep 16.

引用本文的文献

2
9
Use of artificial intelligence algorithms to analyse systemic sclerosis-interstitial lung disease imaging features.
Rheumatol Int. 2024 Oct;44(10):2027-2041. doi: 10.1007/s00296-024-05681-7. Epub 2024 Aug 29.
10
A Multichannel CT and Radiomics-Guided CNN-ViT (RadCT-CNNViT) Ensemble Network for Diagnosis of Pulmonary Sarcoidosis.
Diagnostics (Basel). 2024 May 18;14(10):1049. doi: 10.3390/diagnostics14101049.

本文引用的文献

1
Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks.
Comput Methods Biomech Biomed Eng Imaging Vis. 2018;6(1):1-6. doi: 10.1080/21681163.2015.1124249. Epub 2016 Jun 6.
2
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network.
IEEE Trans Med Imaging. 2016 May;35(5):1207-1216. doi: 10.1109/TMI.2016.2535865. Epub 2016 Feb 29.
3
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.
IEEE Trans Med Imaging. 2016 May;35(5):1285-98. doi: 10.1109/TMI.2016.2528162. Epub 2016 Feb 11.
4
Combining Generative and Discriminative Representation Learning for Lung CT Analysis With Convolutional Restricted Boltzmann Machines.
IEEE Trans Med Imaging. 2016 May;35(5):1262-1272. doi: 10.1109/TMI.2016.2526687. Epub 2016 Feb 8.
5
Multi-atlas segmentation with augmented features for cardiac MR images.
Med Image Anal. 2015 Jan;19(1):98-109. doi: 10.1016/j.media.2014.09.005. Epub 2014 Sep 19.
6
A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):403-10. doi: 10.1007/978-3-642-40763-5_50.
10
Computerized detection of diffuse lung disease in MDCT: the usefulness of statistical texture features.
Phys Med Biol. 2009 Nov 21;54(22):6881-99. doi: 10.1088/0031-9155/54/22/009. Epub 2009 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验