Suppr超能文献

阻塞性肺病的胸部 CT 基于内容的图像检索中的检索准确性和视觉相似性评估。

Evaluation of retrieval accuracy and visual similarity in content-based image retrieval of chest CT for obstructive lung disease.

机构信息

Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, 05505, Seoul, Korea.

Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine Kyung, Hee University, Seoul, Korea.

出版信息

Sci Rep. 2024 Feb 26;14(1):4587. doi: 10.1038/s41598-024-54954-5.

Abstract

The aim of our study was to assess the performance of content-based image retrieval (CBIR) for similar chest computed tomography (CT) in obstructive lung disease. This retrospective study included patients with obstructive lung disease who underwent volumetric chest CT scans. The CBIR database included 600 chest CT scans from 541 patients. To assess the system performance, follow-up chest CT scans of 50 patients were evaluated as query cases, which showed the stability of the CT findings between baseline and follow-up chest CT, as confirmed by thoracic radiologists. The CBIR system retrieved the top five similar CT scans for each query case from the database by quantifying and comparing emphysema extent and size, airway wall thickness, and peripheral pulmonary vasculatures in descending order from the database. The rates of retrieval of the same pairs of query CT scans in the top 1-5 retrievals were assessed. Two expert chest radiologists evaluated the visual similarities between the query and retrieved CT scans using a five-point scale grading system. The rates of retrieving the same pairs of query CTs were 60.0% (30/50) and 68.0% (34/50) for top-three and top-five retrievals. Radiologists rated 64.8% (95% confidence interval 58.8-70.4) of the retrieved CT scans with a visual similarity score of four or five and at least one case scored five points in 74% (74/100) of all query cases. The proposed CBIR system for obstructive lung disease integrating quantitative CT measures demonstrated potential for retrieving chest CT scans with similar imaging phenotypes. Further refinement and validation in this field would be valuable.

摘要

本研究旨在评估基于内容的图像检索(CBIR)在阻塞性肺疾病相似胸部 CT 中的性能。这项回顾性研究纳入了接受容积式胸部 CT 扫描的阻塞性肺疾病患者。CBIR 数据库包含了 541 名患者的 600 例胸部 CT 扫描。为了评估系统性能,50 例患者的随访胸部 CT 扫描被评估为查询病例,胸部放射科医生证实了 CT 发现的稳定性,即基线和随访胸部 CT 之间的稳定性。CBIR 系统通过对数据库中肺气肿程度和大小、气道壁厚度和外周肺血管进行定量比较,从数据库中按降序为每个查询病例检索前 5 个相似的 CT 扫描。评估了在检索的前 1-5 个结果中检索相同对查询 CT 扫描的比例。两位胸部放射学专家使用五分制评分系统评估查询和检索 CT 扫描之间的视觉相似性。在检索的前 3 个和前 5 个结果中检索到相同对查询 CT 的比例分别为 60.0%(30/50)和 68.0%(34/50)。放射科医生对 64.8%(95%置信区间 58.8-70.4)的检索 CT 扫描进行了评分,其视觉相似性评分为 4 或 5,在所有 100 个查询病例中,有 74%(74/100)的病例至少有一个病例得分为 5 分。该研究提出的用于阻塞性肺疾病的 CBIR 系统整合了定量 CT 指标,具有检索具有相似成像表型的胸部 CT 扫描的潜力。在该领域进一步的改进和验证将是有价值的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e27b/10894863/898fa3329b1d/41598_2024_54954_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验