Department of Immunology, Health Sciences University School of Medicine, İstanbul, Turkey.
Department of Medical Biology, Health Sciences University School of Medicine, İstanbul, Turkey.
Turk J Gastroenterol. 2020 Oct;31(10):713-720. doi: 10.5152/tjg.2020.19154.
BACKGROUND/AIMS: Helicobacter pylori is classified as a gram-negative bacteria and can cause significant diseases, including gastric cancer, mucosa-associated lymphoid tumor, peptic ulcer, and chronic gastritis. Recent studies have shown that some autoimmune diseases are also associated with H. pylori. In the past decades, polymorphisms of certain genes of H. pylori, mechanisms and strains of H. pylori, and new therapeutic approaches have continued to be defined. Bioinformatic tools continue to be used in drug design and vaccine design. This study aimed to investigate the cag pathogenicity island (cagPAI) of H. pylori using an in silico approach, which could contribute to vaccine studies.
The pathogenicity island of H. pylori was obtained from GenBank and analyzed with ClustalW software. Structures of cag Virb11 (Hp0525) and an inhibitory protein (Hp1451) were obtained, and codon optimization and secondary and tertiary structure prediction for the cagPAI of H. pylori were analyzed using Garnier-Osguthorpe-Rabson IV secondary structure prediction method and self-optimized prediction method with alignment software. The BcePred prediction server was used to distinguish linear B-cell epitopes, and prediction of T-cell was obtained with NetCTL and MHCPred.
According to the physicochemical parameters, the cagPAI of H. pylori was analyzed and found to be stable, and 2 B-cell epitopes of cagPAI of H. pylori and 2 T-cell epitopes of cagPAI were found in this study.
B- and T-cell epitopes that we have identified can induce both humoral and cellular immune responses. Thus, these epitopes have a potential for vaccine studies. Consequently, this in silico analysis should be combined with other pieces of evidence, including experimental data, to assign function.
背景/目的:幽门螺杆菌被归类为革兰氏阴性菌,可引起重大疾病,包括胃癌、黏膜相关淋巴组织肿瘤、消化性溃疡和慢性胃炎。最近的研究表明,一些自身免疫性疾病也与 H. pylori 有关。在过去的几十年中,H. pylori 的某些基因的多态性、H. pylori 的机制和菌株以及新的治疗方法一直在不断被定义。生物信息学工具继续被用于药物设计和疫苗设计。本研究旨在使用计算机模拟方法研究 H. pylori 的 cag 致病岛(cagPAI),这有助于进行疫苗研究。
从 GenBank 获取 H. pylori 的致病岛,并使用 ClustalW 软件进行分析。获得 cag Virb11(Hp0525)和抑制蛋白(Hp1451)的结构,并使用 Garnier-Osguthorpe-Rabson IV 二级结构预测方法和对齐软件的自优化预测方法对 H. pylori 的 cagPAI 进行密码子优化和二级和三级结构预测。使用 BcePred 预测服务器来区分线性 B 细胞表位,并使用 NetCTL 和 MHCPred 获得 T 细胞预测。
根据理化参数分析 H. pylori 的 cagPAI,发现其稳定,并在本研究中发现 H. pylori 的 cagPAI 有 2 个 B 细胞表位和 2 个 T 细胞表位。
我们鉴定的 B 细胞和 T 细胞表位可以诱导体液和细胞免疫反应。因此,这些表位具有疫苗研究的潜力。因此,这种计算机模拟分析应与其他证据(包括实验数据)相结合,以确定功能。