Suppr超能文献

免疫相关预后基因在转移性黑色素瘤微环境中的数据挖掘。

Data mining of immune-related prognostic genes in metastatic melanoma microenvironment.

机构信息

Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China, 215000.

Department of Surgery, Soochow University, Suzhou, P.R. China, 215000.

出版信息

Biosci Rep. 2020 Nov 27;40(11). doi: 10.1042/BSR20201704.

Abstract

Skin cutaneous melanoma (SKCM) is one of the most deadly malignancies. Although immunotherapies showed the potential to improve the prognosis for metastatic melanoma patients, only a small group of patients can benefit from it. Therefore, it is urgent to investigate the tumor microenvironment in melanoma as well as to identify efficient biomarkers in the diagnosis and treatments of SKCM patients. A comprehensive analysis was performed based on metastatic melanoma samples from the Cancer Genome Atlas (TCGA) database and ESTIMATE algorithm, including gene expression, immune and stromal scores, prognostic immune-related genes, infiltrating immune cells analysis and immune subtype identification. Then, the differentially expressed genes (DEGs) were obtained based on the immune and stromal scores, and a list of prognostic immune-related genes was identified. Functional analysis and the protein-protein interaction network revealed that these genes enriched in multiple immune-related biological processes. Furthermore, prognostic genes were verified in the Gene Expression Omnibus (GEO) databases and used to predict immune infiltrating cells component. Our study revealed seven immune subtypes with different risk values and identified T cells as the most abundant cells in the immune microenvironment and closely associated with prognostic outcomes. In conclusion, the present study thoroughly analyzed the tumor microenvironment and identified prognostic immune-related biomarkers for metastatic melanoma.

摘要

皮肤黑色素瘤 (SKCM) 是最致命的恶性肿瘤之一。尽管免疫疗法显示出改善转移性黑色素瘤患者预后的潜力,但只有一小部分患者从中受益。因此,迫切需要研究黑色素瘤中的肿瘤微环境,并确定诊断和治疗 SKCM 患者的有效生物标志物。基于癌症基因组图谱 (TCGA) 数据库和 ESTIMATE 算法的转移性黑色素瘤样本进行了全面分析,包括基因表达、免疫和基质评分、预后免疫相关基因、浸润免疫细胞分析和免疫亚型鉴定。然后,根据免疫和基质评分获得差异表达基因 (DEGs),并确定了一组预后免疫相关基因。功能分析和蛋白质-蛋白质相互作用网络表明,这些基因富集在多个免疫相关的生物学过程中。此外,在基因表达综合数据库 (GEO) 中验证了预后基因,并用于预测免疫浸润细胞成分。我们的研究揭示了七种具有不同风险值的免疫亚型,并鉴定出 T 细胞是免疫微环境中最丰富的细胞,与预后结果密切相关。总之,本研究全面分析了肿瘤微环境,并确定了转移性黑色素瘤的预后免疫相关生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4861/7685010/50ab039fe0da/bsr-40-bsr20201704-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验