Suppr超能文献

使用简单的开源自动机器学习算法预测COVID-19传播:一项建模研究。

Using a simple open-source automated machine learning algorithm to forecast COVID-19 spread: A modelling study.

作者信息

Asfahan Shahir, Gopalakrishnan Maya, Dutt Naveen, Niwas Ram, Chawla Gopal, Agarwal Mehul, Garg Mahendera Kumar

机构信息

All India Institute of Medical Sciences, Rajasthan, Jodhpur, India.

出版信息

Adv Respir Med. 2020;88(5):400-405. doi: 10.5603/ARM.a2020.0156.

Abstract

INTRODUCTION

Machine learning algorithms have been used to develop prediction models in various infectious and non-infectious settings including interpretation of images in predicting the outcome of diseases. We demonstrate the application of one such simple automated machine learning algorithm to a dataset obtained about COVID-19 spread in South Korea to better understand the disease dynamics.

MATERIAL AND METHODS

Data from 20th January 2020 (when the first case of COVID-19 was detected in South Korea) to 4th March 2020 was accessed from Korea's centre for disease control (KCDC). A future time-series of specified length (taken as 7 days in our study) starting from 5th March 2020 to 11th March 2020 was generated and fed to the model to generate predictions with upper and lower trend bounds of 95% confidence intervals. The model was assessed for its ability to reliably forecast using mean absolute percentage error (MAPE) as the metric.

RESULTS

As on 4th March 2020, 145,541 patients were tested for COVID-19 (in 45 days) in South Korea of which 5166 patients tested positive. The predicted values approximated well with the actual numbers. The difference between predicted and observed values ranged from 4.08% to 12.77% . On average, our predictions differed from actual values by 7.42% (MAPE) over the same period.

CONCLUSION

Open source and automated machine learning tools like Prophet can be applied and are effective in the context of COVID-19 for forecasting spread in naïve communities. It may help countries to efficiently allocate healthcare resources to contain this pandemic.

摘要

引言

机器学习算法已被用于在各种传染病和非传染病环境中开发预测模型,包括在疾病预后预测中对图像的解读。我们展示了一种这样简单的自动化机器学习算法在一个关于韩国新冠病毒传播的数据集上的应用,以更好地理解疾病动态。

材料与方法

从韩国疾病控制中心获取了2020年1月20日(韩国首次检测到新冠病毒病例之日)至2020年3月4日的数据。生成了一个从2020年3月5日开始到2020年3月11日的指定长度(在我们的研究中为7天)的未来时间序列,并将其输入模型以生成具有95%置信区间上下趋势边界的预测。使用平均绝对百分比误差(MAPE)作为指标评估模型可靠预测的能力。

结果

截至2020年3月4日,韩国在45天内对145541名患者进行了新冠病毒检测,其中5166名患者检测呈阳性。预测值与实际数字非常接近。预测值与观测值之间的差异在4.08%至12.77%之间。同期,我们的预测值与实际值的平均差异为7.42%(MAPE)。

结论

像Prophet这样的开源自动化机器学习工具可以应用于新冠病毒的情况,并在预测未受影响社区的传播方面有效。它可能有助于各国有效分配医疗资源以控制这一疫情。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验