Advanced Science Research Center (ASRC) at The Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States.
Department of Chemistry, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States.
ACS Nano. 2020 Nov 24;14(11):15056-15063. doi: 10.1021/acsnano.0c05029. Epub 2020 Nov 10.
Supramolecular materials have gained substantial interest for a number biological and nonbiological applications. However, for optimum utilization of these dynamic self-assembled materials, it is important to visualize and understand their structures at the nanoscale, in solution and in real time. Previous approaches for imaging these structures have utilized super-resolution optical imaging methods such as STORM, which has provided important insights, but suffers from drawbacks of complex sample preparation and slow acquisition times, thus limiting real-time in situ imaging of dynamic processes. We demonstrate a noncovalent fluorescent labeling design for STED-based super-resolution imaging of self-assembling peptides. This is achieved by in situ, electrostatic binding of anionic sulfonates of Alexa-488 dye to the cationic sites of lysine (or arginine) residues exposed on the peptide nanostructure surface. A direct, multiscale visualization of static structures reveals hierarchical organization of supramolecular fibers with sub-60 nm resolution. In addition, the degradation of nanofibers upon enzymatic hydrolysis of peptide could be directly imaged in real time, and although resolution was compromised in this dynamic process, it provided mechanistic insights into the enzymatic degradation process. Noncovalent Alexa-488 labeling and subsequent imaging of a range of cationic self-assembling peptides and peptide-functionalized gold nanoparticles demonstrated the versatility of the methodology for the imaging of cationic supramolecular structures. Overall, our approach presents a general and simple method for the electrostatic fluorescent labeling of cationic peptide nanostructures for nanoscale imaging under physiological conditions and probe dynamic processes in real time and in situ.
超分子材料在许多生物和非生物应用中引起了广泛的关注。然而,为了优化这些动态自组装材料的利用,重要的是要在纳米尺度、溶液中和实时可视化和理解它们的结构。以前用于成像这些结构的方法利用了超分辨率光学成像方法,如 STORM,这提供了重要的见解,但存在复杂的样品制备和缓慢的采集时间的缺点,从而限制了动态过程的实时原位成像。我们展示了一种用于基于 STED 的自组装肽超分辨率成像的非共价荧光标记设计。这是通过在原位静电结合 Alexa-488 染料的阴离子磺酸盐与肽纳米结构表面暴露的赖氨酸(或精氨酸)残基的阳离子位点来实现的。直接的、多尺度的静态结构可视化揭示了超分子纤维的分级组织,分辨率达到 60nm 以下。此外,肽的酶水解导致纳米纤维的降解可以实时直接成像,尽管在这个动态过程中分辨率受到影响,但它为酶降解过程提供了机制上的见解。非共价 Alexa-488 标记以及一系列阳离子自组装肽和肽功能化金纳米粒子的后续成像证明了该方法在生理条件下对阳离子超分子结构进行纳米尺度成像以及实时和原位探测动态过程的多功能性。总的来说,我们的方法为在生理条件下对阳离子肽纳米结构进行静电荧光标记提供了一种通用且简单的方法,用于纳米尺度成像,并实时和原位探测动态过程。