Suppr超能文献

量子进化方面:通过量子游走对基因型网络进行进化探索的贡献。

Quantum aspects of evolution: a contribution towards evolutionary explorations of genotype networks via quantum walks.

机构信息

Red de Biología y Conservación de Vertebrados, Instituto de Ecología, A.C. Carr. Antigua a Coatepec 351, Col. El Haya, C.P. 91070, Xalapa, Veracruz, Mexico.

Centro de Investigación en Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho 5, Centro, Xalapa-Enríquez, Veracruz, Mexico.

出版信息

J R Soc Interface. 2020 Nov;17(172):20200567. doi: 10.1098/rsif.2020.0567. Epub 2020 Nov 11.

Abstract

Quantum biology seeks to explain biological phenomena via quantum mechanisms, such as enzyme reaction rates via tunnelling and photosynthesis energy efficiency via coherent superposition of states. However, less effort has been devoted to study the role of quantum mechanisms in biological evolution. In this paper, we used transcription factor networks with two and four different phenotypes, and used classical random walks (CRW) and quantum walks (QW) to compare network search behaviour and efficiency at finding novel phenotypes between CRW and QW. In the network with two phenotypes, at temporal scales comparable to decoherence time , QW are as efficient as CRW at finding new phenotypes. In the case of the network with four phenotypes, the QW had a higher probability of mutating to a novel phenotype than the CRW, regardless of the number of mutational steps (i.e. 1, 2 or 3) away from the new phenotype. Before quantum decoherence, the QW probabilities become higher turning the QW effectively more efficient than CRW at finding novel phenotypes under different starting conditions. Thus, our results warrant further exploration of the QW under more realistic network scenarios (i.e. larger genotype networks) in both closed and open systems (e.g. by considering Lindblad terms).

摘要

量子生物学试图通过量子机制来解释生物学现象,例如通过隧道效应来解释酶反应速率,通过相干态叠加来解释光合作用的能量效率。然而,人们在研究量子机制在生物进化中的作用方面所做的努力较少。在本文中,我们使用了具有两种和四种不同表型的转录因子网络,并使用经典随机游走(CRW)和量子游走(QW)来比较 CRW 和 QW 在寻找新表型方面的网络搜索行为和效率。在具有两种表型的网络中,在与退相干时间可比的时间尺度上,QW 在寻找新表型方面与 CRW 一样有效。在具有四种表型的情况下,QW 比 CRW 更有可能突变到新表型,而与离新表型的突变步骤(即 1、2 或 3)数量无关。在量子退相干之前,QW 的概率更高,使得 QW 在不同的起始条件下比 CRW 更有效地寻找新表型。因此,我们的结果证明了在更现实的网络场景(例如,更大的基因型网络)下,在封闭和开放系统(例如,通过考虑林德布拉德项)中,对 QW 进行进一步探索是合理的。

相似文献

2
Protein-DNA target search relies on quantum walk.蛋白质-DNA 目标搜索依赖于量子游走。
Biosystems. 2021 Mar;201:104340. doi: 10.1016/j.biosystems.2020.104340. Epub 2020 Dec 31.
4
A versatile quantum walk resonator with bright classical light.一种多功能量子漫步谐振器,带有明亮的经典光线。
PLoS One. 2019 Apr 9;14(4):e0214891. doi: 10.1371/journal.pone.0214891. eCollection 2019.
9
Quantum-like environment adaptive model for creation of phenotype.量子似环境自适应模型用于表型创建。
Biosystems. 2024 Aug;242:105261. doi: 10.1016/j.biosystems.2024.105261. Epub 2024 Jul 2.

本文引用的文献

3
The origins of quantum biology.量子生物学的起源。
Proc Math Phys Eng Sci. 2018 Dec;474(2220):20180674. doi: 10.1098/rspa.2018.0674. Epub 2018 Dec 12.
9
Does evolutionary theory need a rethink?进化理论需要重新思考吗?
Nature. 2014 Oct 9;514(7521):161-4. doi: 10.1038/514161a.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验