Suppr超能文献

生物学中的量子效应:酶、嗅觉、光合作用和磁探测中的黄金法则。

Quantum effects in biology: golden rule in enzymes, olfaction, photosynthesis and magnetodetection.

作者信息

Brookes Jennifer C

机构信息

London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1E 6BT, UK.

出版信息

Proc Math Phys Eng Sci. 2017 May;473(2201):20160822. doi: 10.1098/rspa.2016.0822. Epub 2017 May 31.

Abstract

Despite certain quantum concepts, such as superposition states, entanglement, 'spooky action at a distance' and tunnelling through insulating walls, being somewhat counterintuitive, they are no doubt extremely useful constructs in theoretical and experimental physics. More uncertain, however, is whether or not these concepts are fundamental to biology and living processes. Of course, at the fundamental level all things are quantum, because all things are built from the quantized states and rules that govern atoms. But when does the quantum mechanical toolkit become the best tool for the job? This review looks at four areas of 'quantum effects in biology'. These are biosystems that are very diverse in detail but possess some commonality. They are all (i) in biology: rates of a signal (or information) that can be calculated from a form of the 'golden rule' and (ii) they are all protein-pigment (or ligand) complex systems. It is shown, beginning with the rate equation, that all these systems may contain some degree of effect, and where experimental evidence is available, it is explored to determine how the quantum analysis aids in understanding of the process.

摘要

尽管某些量子概念,如叠加态、纠缠、“鬼魅般的超距作用”以及穿过绝缘壁的隧穿效应,有些违反直觉,但它们无疑是理论物理和实验物理中极其有用的概念。然而,这些概念对于生物学和生命过程是否至关重要则更不确定。当然,在基础层面上所有事物都是量子的,因为所有事物都是由支配原子的量子化状态和规则构成的。但是量子力学工具何时成为解决问题的最佳工具呢?本综述着眼于“生物学中的量子效应”的四个领域。这些生物系统在细节上差异很大,但具有一些共性。它们都(i)在生物学中:信号(或信息)的速率可以从一种“黄金法则”形式计算得出,并且(ii)它们都是蛋白质 - 色素(或配体)复合系统。从速率方程开始表明,所有这些系统可能都包含某种程度的效应,并且在有实验证据的情况下,会探讨量子分析如何有助于理解该过程。

相似文献

1
Quantum effects in biology: golden rule in enzymes, olfaction, photosynthesis and magnetodetection.
Proc Math Phys Eng Sci. 2017 May;473(2201):20160822. doi: 10.1098/rspa.2016.0822. Epub 2017 May 31.
2
The origins of quantum biology.
Proc Math Phys Eng Sci. 2018 Dec;474(2220):20180674. doi: 10.1098/rspa.2018.0674. Epub 2018 Dec 12.
3
Quantum biology of the retina.
Clin Exp Ophthalmol. 2014 Aug;42(6):582-9. doi: 10.1111/ceo.12373. Epub 2014 Aug 7.
4
Chronobiology Meets Quantum Biology: A New Paradigm Overlooking the Horizon?
Front Physiol. 2022 Jul 6;13:892582. doi: 10.3389/fphys.2022.892582. eCollection 2022.
6
Semantic parsing of the life process by quantum biology.
Prog Biophys Mol Biol. 2022 Nov;175:79-89. doi: 10.1016/j.pbiomolbio.2022.09.005. Epub 2022 Sep 17.
7
Nontrivial quantum and quantum-like effects in biosystems: Unsolved questions and paradoxes.
Prog Biophys Mol Biol. 2015 Nov;119(2):137-61. doi: 10.1016/j.pbiomolbio.2015.07.001. Epub 2015 Jul 6.
8
Electronic processes in biology. The seventeenth Douglas Lea Lecture.
Phys Med Biol. 1982 Mar;27(3):335-52. doi: 10.1088/0031-9155/27/3/001.
9
Quantifying Quantum-Mechanical Processes.
Sci Rep. 2017 Oct 19;7(1):13588. doi: 10.1038/s41598-017-13604-9.
10
Consciousness, biology and quantum hypotheses.
Phys Life Rev. 2012 Sep;9(3):285-94. doi: 10.1016/j.plrev.2012.07.001. Epub 2012 Jul 10.

引用本文的文献

1
Nuclear quantum effects in molecular liquids across chemical space.
Nat Commun. 2025 Jul 1;16(1):5786. doi: 10.1038/s41467-025-60850-x.
3
Bioelectrical synchronization of during a solar eclipse.
R Soc Open Sci. 2025 Apr 30;12(4):241786. doi: 10.1098/rsos.241786. eCollection 2025 Apr.
5
Tunneling Times in an Asymmetric Harmonic Double-Well with Application to Electron Transfers in Biological Macromolecules.
ACS Omega. 2024 Dec 9;9(50):49832-49838. doi: 10.1021/acsomega.4c08622. eCollection 2024 Dec 17.
6
Persistence of Correlations in Neurotransmitter Transport through the Synaptic Cleft.
Biology (Basel). 2024 Jul 18;13(7):541. doi: 10.3390/biology13070541.
7
What Is life? Rethinking Biology in Light of Fundamental Parameters.
Life (Basel). 2024 Feb 20;14(3):280. doi: 10.3390/life14030280.
9
Accelerating an integrative view of quantum biology.
Front Physiol. 2024 Jan 11;14:1349013. doi: 10.3389/fphys.2023.1349013. eCollection 2023.

本文引用的文献

1
Using coherence to enhance function in chemical and biophysical systems.
Nature. 2017 Mar 29;543(7647):647-656. doi: 10.1038/nature21425.
2
Quantum design of photosynthesis for bio-inspired solar-energy conversion.
Nature. 2017 Mar 15;543(7645):355-365. doi: 10.1038/nature22012.
4
Tracking the coherent generation of polaron pairs in conjugated polymers.
Nat Commun. 2016 Dec 8;7:13742. doi: 10.1038/ncomms13742.
5
Long-range energy transport in photosystem II.
J Chem Phys. 2016 Jun 28;144(24):245101. doi: 10.1063/1.4953243.
6
Differential Electrophysiological Responses to Odorant Isotopologues in Drosophilid Antennae.
eNeuro. 2016 Jun 20;3(3). doi: 10.1523/ENEURO.0152-15.2016. eCollection 2016 May-Jun.
7
Differential Odour Coding of Isotopomers in the Honeybee Brain.
Sci Rep. 2016 Feb 22;6:21893. doi: 10.1038/srep21893.
8
Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion.
Nat Phys. 2014 Sep 1;10(9):676-682. doi: 10.1038/nphys3017.
9
A magnetic protein biocompass.
Nat Mater. 2016 Feb;15(2):217-26. doi: 10.1038/nmat4484. Epub 2015 Nov 16.
10
What is so special about smell? Olfaction as a model system in neurobiology.
Postgrad Med J. 2016 Jan;92(1083):27-33. doi: 10.1136/postgradmedj-2015-133249. Epub 2015 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验